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Anovel search technique calledhighway search is introduced. The search technique relies on

a highway simulationwhich takes several homogeneous walks through a (possibly infinite)

state space. Furthermore, we provide a memory-efficient algorithm that approximates a

highway search and we prove that, under particular conditions, they coincide. The effec-

tiveness of highway search is compared to twomainstream search techniques, viz. random

search and randomised depth-first search. Our results demonstrate that randomised depth-

first search explores the least amount of states in the effort of finding states of interest,

whereas a highways search yields the shortest witnessing traces to such states.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Random simulation is used in many engineering disciplines as a technique to validate the correctness of a design and get

acquainted with its properties. Its popularity is explained largely from the fact that it is push-button technology, limiting

user input to a bare minimum. Adding to its popularity are the appeal to intuition that is behind the method, and the sense

that a random simulation reflects the typical behaviours of a system.

While random simulation is a proper tool for some designs, its use in a non-deterministic setting is certainly less ob-

vious. This is because the results that are obtained by means of a random simulation are often a poor reflection of the

overall behaviour of the design. This is amplified in non-deterministic designs with huge or even infinite state spaces, in

which a single simulation visits an insignificant part of the entire state space. In fact, Pelánek et al. [15] demonstrated

that for random simulation, the frequency of visits of states has the power law distribution rather than a uniform

distribution.

Still, random simulation is often useful when the primary verification tools such asmodel-checking tools (see e.g. [9]) and

theorem proving are incapable of dealingwith the problem at hand due to the infamous phenomenon known as “state-space

explosion”. In such cases, random simulation can be used to search for particularly interesting states or events, leading to a

random search.

In this paper, we demonstrate that there is ample room for improvement in random simulation. We investigate a tech-

nique called highway simulation (with the associated search technique called highway search), which can be implemented

straightforwardly. Furthermore, we provide an algorithm for conducting an approximation of a highway simulation, and we

study its properties. Experiments indicate that in practice, an approximate highway search and an ideal highway search do

not differ significantly.

Highway simulation is akin to a restricted breadth-first exploration [18], which provides a graceful degradation from

breadth-first exploration to random simulation, and parallel random simulation [15]. The simulation technique (and its

associated search technique) remains push-button technology, requiring little to no human intervention. Note that this
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is different from the approach known as directed model checking, which uses heuristics to guide a search towards states of

interest; using or defining effective heuristics can be very labour-intensive andmay require more knowledge of a state space

than is available.

The effectiveness of highway search is compared with standard search methods such as randomised depth-first search

and random search. Randomised depth-first search has been advocated as a yardstick for comparing the efficacy of directed

model checking algorithms [17]. However, we feel that the comparison of [17] is one-sided, as it only looks at the probability

of finding states of interest in a state space.We believe it is equally important, if not more important, to findwitnesses (traces

through the state space that lead to the state of interest) that are short, as these provide essential feedback to the designers

of a misbehaving system. This is not taken into account in [17]. The experiments that we conducted not only consider the

amount of states that are required for finding a state of interest in a given state space, but also the length of the witness

that leads to the state. Our results show that in nearly all cases, a highway search is the preferred search method if one

wishes to find short witnesses, whereas a randomised depth-first search is a viable alternative if one has severe restrictions

on available memory.

This paper is structured as follows. Relatedwork and a positioning of ourworkwith respect to relatedwork is discussed in

Section 2. Section 3 provides a brief exposition of our formal framework which we use to explain the simulation and search

methods. In Section 4 the search methods are introduced and in Section 5 we describe several experiments that we used to

study the various search techniques. We present our conclusions in Section 6.

2. Related work

A recent overview of different search methods is provided in [15]. The authors show by means of experiments that the

probability of visiting a state in an arbitrary state space using a random simulation has the power law distribution. This

means that a random simulation “spends most of the time repeatedly visiting just a few states” [15]. Most of our studies

indicate that this indeed hampers the search; however, the classical dining philosopher problem (studied in Section 5.2.3)

illustrates that this property is useful at times.

Over the years, a variety of search techniques have been proposed; these often take advantage of specific (hardware)

architectures. We categorise the search techniques by the following two criteria:

• distribution, i.e., the search technique is tailored towards a distributed implementation on, e.g., clusters of processors;

• guiding, i.e., the search technique requires heuristics of some sort (either human or rule-based), next to the search

objective and the specification, to perform the search.

While it is to be expected that the best (i.e. fastest and shortest) results can be obtained using distributed and guided

algorithms, such algorithms also tend to require most resources in terms of hardware and time that has to be invested in

providing the right set of heuristics for guiding the search. In general, onemaynothave these resources available,which iswhy

one often resorts to classic non-distributed non-guided search methodologies, which are push-button and use off-the-shelf

technology. Understanding which search methodology is generally most suited is therefore crucial.

The search methods studied in this paper are random search, randomised depth-first search [17] and highway search, all

of which are non-distributed and non-guided search algorithms. Following [17], randomised depth-first search is used as

a yardstick for comparing the efficacy of highway search and random search. However, contrary to [17], we refrain from

assigning measures to the complexity of our experiments, since the measure of [17] is not independent of the hardware

and software running the search algorithms. Instead, we look at the (average) achievements of the searches given a (per

experiment) realistic upper bound on the number of states that may be explored.

Distributed search methods. The benefits of distributing a search over several clients are primarily the speed gains and an

increased scale of the state space. However, such a gain is only achieved if the searches in all clients are largely disjoint and

the overhead in keeping a global view of the search that is conducted is negligible.

In [10], Jones and Sorber describe a method that relies on a parallel search for LTL violations. The search algorithm, called

bee-based error exploration (BEE) is a fault-tolerant algorithm that is tailored to operate in a general purpose distributed

computing environment consisting of workstations that can be switched off at any point in time. The search method itself

consists of coordinated depth-bounded random walks. Several examples show that the BEE algorithm outperforms non-

distributed model checking algorithms relying on bitstate hashing. The authors suggest the approach might be improved by

replacing the random search by better search techniques.

Instead, Sivaraj and Gopalakrishnan [18] assume a reliable network of clients, which they employ to run algorithms that

rely on combinations of random walks with bounded breadth-first search. Breadth-first search is used to achieve a wide

coverage, whereas random walk is used to find “deep” errors. The approach advocated by Rasmussen et al. [16] can be seen

as an improvement over [18]. Their approach relies on specialised search agents that can reside in one ormore clients. Agents

can trigger searches in other agents running other search algorithms to assist in the exploration when fruitful parts of the

state space are found.

A naive, but sometimes successful approach to distribution is to rely on randomness to achieve an even distribution of

the work-load among all clients. This approach is taken in e.g. [3], where several clients run a partial randomised depth-first

search in parallel. Note that such an approach to distribution applies to most randomised search methods.
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Directed search methods. By guiding a search using additional heuristics, one hopes to direct the search effort to the bug-

containing part of the state space without wasting time in searching the bug-free part of the state space.

In [6], Groce and Visser propose to use heuristics for best-first search and beam-search. They provide heuristics that

exploit, among others, structural coverage and concurrency structures. The authors reason that the tester or developer of

a system has knowledge of the system and accordingly understands where errors are likely to hide. In order to employ

such knowledge, their method is open to user-defined heuristics. Three examples, including the dining philosophers, have

been conducted using the software model checking tool Java PathFinder [20]. These experiments demonstrate that error

finding becomes tractable in some systems where unguided searches do not work very well. However, the authors also

rightfully note that their experiments and experience do not suggest a single heuristic to solve the search problem. A

different set of heuristics for beam search is further studied byWijs and Lisser [21], where, moreover, a distributed approach

to beam search is taken. Searching for error states in real-time systems can be done using e.g. Uppaal/DMC [11], which

uses a heuristic function to determine the distance to the nearest error state, and Mcta [12], which is based on iterative

refinements.

Godefroid and Kurshid [5] introduce a search technique based on genetic algorithms. Fitness functions (heuristics) that

are tailored to the property that is searched for are used for mutation and selection. The authors compare their techniques

to the effectiveness of random search. Even though distribution of the algorithm is not mentioned in [5], it is likely that the

mutation and selection processes can be distributed.

3. Framework

We present our techniques in the setting of Transition Systems (TSs). We stress that the notions that we subsequently

develop are easily recast into richer frameworks such as labelled transition systems.

Definition 1. A transition system is a three-tuple 〈S, s0,→〉, where S is a possibly infinite set of states, referred to as the state

space, s0 ∈ S is the initial state and →⊆ S × S is the transition relation. We write s → t instead of (s, t) ∈→.

Throughout this section, we assume an arbitrary TS S = 〈S, s0,→〉. Let s ∈ S be an arbitrary state. The set of successor states

of s is defined as succ(s) = {s′|s → s′}; generalised to a set of states S′, we have succ(S′) = ⋃
s′∈S′ succ(s′). The TSs that we

consider in this paper are finitely branching, i.e. for each state s ∈ S, we require |succ(s)| ∈ N. A path starting in s is a sequence

of states σ ≡ t0 t1 · · · tn for n ≥ 0 satisfying t0 = s and ti+1 ∈ succ(ti). The state s is reachable iff there is a path starting in s0
ending in s; the set of reachable states of a finite-state TS can be found bymeans of an exhaustive breadth-first or depth-first

exploration (randomised depth-first exploration being a variation on depth-first exploration in which a successor state is

selected on a random basis rather than following a pre-determined deterministic strategy). For TSs with an infinite state

space, or a finite but extremely large state space, an exhaustive exploration is not feasible because of memory and/or time

restrictions. Therefore, some approaches resort to probabilistic methods. The most intuitive and straightforward probabilistic

state-space exploration method is that of random simulation.

Definition 2. A random simulation of the state space is a path σ starting in s0, for which each si+1 is obtained by a random

draw from the set succ(si).

Random simulation suffers from the problem of a poor coverage of the state space (see e.g. [18,15]): in the presence of

loops and non-determinism, a random simulation may exhibit revisits of states, leading to a power law distribution for the

frequency of state visits. Clearly, unnecessary revisits of states of a state space do not add to the coverage of the state space,

even though such revisits sometimes have a surprisingly rewarding effect (see Section 5.2.3). Methods such as randomised

depth-first exploration visit each state only once, using back-tracking to continue the exploration upon visiting a state with

successor states that have all been explored.

4. Random and highway search

We first set out to define what we mean by a search. A search is based on an underlying exploration or simulation of a

state space and requires a search objective in terms of a set of states of interest. Given a path σ , we denote the set of visited

states of σ by V(σ ), i.e. V(σ ) contains all states that appear in σ . Random search, randomised depth-first search and highway

search consider all successor states in choosing transitions. The set of all considered states of a path σ is denoted by C(σ ),

where for all paths σ ′ and states s, C(σ ′ · s) = V(σ ′ · s) ∪ succ(V(σ ′)). Note that the successors of the final state of a simulation

are not considered as no transition needs to be chosen from such a state.

Definition 3. The result of a random search for a set of states T ⊆ S is defined as the set of states T ∩ C(σ ) that is obtained by

means of a single random simulation σ .
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Fig. 1. Typical paths through a transition system.

Clearly, a random search has drawbacks that can be linked to the drawbacks of the random simulation, viz. the frequent

revisits of states. Thus, random search as a tool for validating a design seems to be far from optimal. We therefore focus

on a hybrid breed of breadth-first exploration and random simulation. The resulting simulation method is dubbed highway

simulation.

Definition 4. Let S and T be arbitrary sets and letN > 0 be an arbitrary natural number.We say that T isN-close to S iff T ⊆ S

and |T | = min(N, |S|).

Next, we generalise the notion of visited states as follows. Let �Q ∈ (2S)* be a sequence of sets of states. The set of visited

states of �Q is denoted V( �Q ), and is defined as the union of all Q that occur in �Q . The set of considered states, denoted C( �Q ),

where for all sequences of sets of states �Q and sets of states Q , C( �Q · Q ) = V( �Q · Q ) ∪ succ(V( �Q )).

Definition 5. A highway simulation of width N > 0 is defined as a sequence of sets of states �Q ∈ (2S)* where �Q = Q0 . . . Qd

satisfies:

• Q0 = {s0} and
• each Qj (for j > 0) is obtained by a random draw from the set Pj:

Pj :=
⎧⎨
⎩S′|S′ is N�close to succ(Qj−1)

∖ ⋃
k<j

Qk

⎫⎬
⎭

The result of a highway search of width N > 0 for a set of states T is defined as the set of states T ∩ C( �Q ) that is obtained by

means of a single highway simulation �Q of width N.

Intuitively, a highway simulation simultaneously explores several lanes (set of paths, in our formal terminology), which at

each instance canmerge or split into new lanes; exits (outgoing transition of a state) of a lane are only considered if these lead

to new places (states, in our formal terminology). Note that the latter requirement may lead to the (premature) termination

of a path. The highway can be thought of as a collection of lanes. Fig. 1 visualises a typical highway simulation of width 2. The

places are indicated by bullets, and the lanes are represented by the small ovals. The large ovals visualise the reachable places

from a preceding lane. The exits that are ignored are printed by a dotted line (such exits lead to already visited places and are

therefore not eligible) or a dashed line (these exits are ignored by chance), whereas the actually taken exits are represented

by a solid line.

Note that a highway simulation of width 1 is akin to a random simulation which is not allowed to revisit states, i.e. it will

terminate when it cannot avoid closing a loop back to a state it has already visited. This is unlike a random search, which

may revisit the state and, at a later stage, may diverge to reach new states.

Property 6. Let �Q = Q0 · · ·Qd be a highway simulation of width N > 0.

• For all i, j, (i 
= j),Qi ∩ Qj = ∅,
• The number of paths starting in s0, implicitly defined by �Q is bound from below by

∑d
i=1 |Qi|.

Highway simulation (and, hence also a highway search) can be implemented straightforwardly. Such an implementation

essentially requires:

(1) Memorising the places that have been visited along a lane,

(2) Computing the set of eligible reachable places from the current lanes and taking a homogeneous N-close selection of

this set.

In case of a large highway width N and a large branching degree of the places in the current lane, first computing the

eligible reachable places in step 2, and subsequently taking a selection of these places can draw significantly on memory

resources and computation times.

The noted problem can be avoided using a probabilistic construction for computing the next set of places in an on-the-fly

fashion. Algorithm 1 implements this solution. Theorem 7 presented below formalises the assumptions that guarantee that

Algorithm 1 correctly implements a highway simulation.
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Algorithm 1 Approximate highway simulation

1: V , d,Q0 = {s0}, 0, {s0};
2: while Qd 
= ∅ do

3: c,Qd+1 = 0, ∅;
4: for s ∈ Qd do

5: for t ∈ succ(s) do

6: if t /∈ V ∪ Qd+1 then

7: c = c + 1;

8: if c ≤ N then Qd+1 = Qd+1 ∪ {t};
9: else with probability N

c
10: select randomly u ∈ Qd+1;

11: Qd+1 = (Qd+1 \ {u}) ∪ {t};
12: end if

13: end if

14: end for

15: end for

16: V , d = V ∪ Qd+1, d + 1;

17: end while

Theorem 7. Let Qd be an arbitrary set of places obtained at iteration d in Algorithm 1. Let V = ⋃
i≤d Qi be the set of places that

have been visited and C = succ(Qd) \ V . If for all different places s1, s2 ∈ Qd, succ(s1) ∩ succ(s2) ⊆ V , then for all s ∈ C:
(1) if |C| ≤ N then P(s ∈ Qd+1) = 1.

(2) if |C| > N then P(s ∈ Qd+1) = N
|C| .

Proof. The first case is trivially satisfied, as in line 8 all non-revisited successor places are added to Qd+1 so long as the set

Qd+1 is not full (i.e. |Qd+1| < N). The second case is settled by means of an inductive proof. In particular, we prove that the

addition of place t in line 11 should be done with probability N
c and at random in the set. With induction on the difference

c − N we show that doing so leads to a uniform distribution (i.e. every place has probability N
|C| of being in the set):

(1) Base case: c − N = 0. This is trivial.

(2) Inductive step: c − N = k + 1 for some k. We added the last place, t, with probability N
c , so we need only consider the

other places. Before adding place t they are in the set with probability N
c−1

(by induction) and when the last place has

been considered, they are still in the set afterwards with probability N
c

(
1 − 1

N

)
+

(
1 − N

c

)
. That is, if the new element

is added, then each currently selected place has chance 1
N of being removed (or 1 − 1

N of not being removed). If t is not

added, then the selected elements obviously remain selected. It is straightforward to derive that

N

c − 1

(
N

c

(
1 − 1

N

)
+

(
1 − N

c

))
= N

c
. �

Indeed, Algorithm 1 correctly implements a highway simulation whenever two places in a lane only lead to the same

place if that place was already visited; all other places that can be reached should be unique.

In practice, this property is difficult to assess upfront. In degenerate cases, the selection mechanism for the next places

that can be reached by the current lanes in Algorithm 1 strongly favours funnels: eligible reachable places that are shared

among a significant amount of places in the current lanes. This is confirmed by the following analysis.

Property 8. Let Q be the selection at some point of some depth d of Algorithm 1 for width N. Further, let c be the number of

places actually considered for addition up to that moment. We analyse the probability of a place to end up in a lane of the highway

simulation when that place is considered for addition multiple times.

Let s /∈ Q be a place. Suppose that we successively try to add s, K (K > 0) times. The probability that s is in Q afterwards is

obtained as follows. Let probabilistic variable Xk denote the conditional probability of adding place s to Q after K attempts when

s fails to be added for the first k ≤ K attempts

P(Xk) =
{
0 if k = K

N
c+k+1

+ (1 − N
c+k+1

)P(Xk+1) if 0 ≤ k < K
(1)

The above expression can be simplified, yielding the following probability function:

P(Xk) = 1 − (c + k)!(c + K − N)!
(c + K)!(c + k − N)! (2)

For k = 0, we then obtain P(X0) = 1 − c!(c+K−N)!
(c+K)!(c−N)! .
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To illustrate the effect for an approximate highway simulation of width N = 1we have that the probability that s will be selected

is K
c+K

(
as opposed to the more desirable 1

c+1

)
.

We can see that K and N have a positive relation to the probability of duplicates being chosen and that c has a negative relation

to it.

Next, observe that a place has the greatest probability of being selected if all of its occurrences are considered last. This implies

that the probability that a place that occurs K times in a sequence of size M consisting of U (U > N) unique elements is selected

with a probability in the interval[
N

M
, 1 − (U − 1)!((U − 1) + K − N)!

((U − 1) + K)!((U − 1) − N)!

]
. (3)

From the above analysis, it follows that in degenerate cases, funnels are more likely to appear in the highway simulation

than ordinary places.

Property 9. When every place t occurs an equal amount of times as successor of a place s ∈ Qd and all successors are treated in

a uniformly distributed way, then the probability of place t appearing in Qd+1 approaches N
U , where U is the number of unique

successors.

While the preceding analysis suggests a highway simulation and an approximate highway simulation behave very differ-

ently, this is not supported by the experiments that we conducted in Section 5. In these experiments, the difference turns out

to be insignificant for most applications, suggesting that the degenerate cases really are less likely to occur than the optimal

cases. We expect that this is due to the small probability of funnels to be present in small highway widths.

5. Experiments

We conducted a number of experiments on both classical and novel problems using three search techniques: random

search, randomised depth-first search and approximate highway search. In the only casewhere approximate highway search

differs significantly from the ideal highway search (see Section 5.2.3), we added the latter in our exposition of the particular

experiment. In our experiments, we studied the efficacy of a searchmethod to (1) find a state or event of interest and (2) find

a short witness to that state or event of interest. Most results are summarised at the end of this section in Table 1; three cases,

including the dining philosophers are discussed in greater detail as these illustrate different aspects of the search methods

that are used. Note that we do not include explicit memory consumption data as for both the randomised depth-first search

and the (approximate) highway search thememory consumption is linear in the number of visited states. For random search

the memory usage is constant (apart from storing a trace in certain cases).

Apart fromanalysing the effectiveness of the search techniques on problems taken frompractice,wefirst study the impact

of commonly found substructures on the behaviour of the search techniques. The latter serves a better understanding of the

intricacies of the search techniques.

All experiments have been conducted using the toolsuite mCRL2,1 a process algebraic language with tool support for

generating and analysing (infinite) state spaces. The systems that we used in our experiments can all be found in the mCRL2

distribution.

5.1. Complex (Sub)structures

Most transition systems stemming from real applications are of moderate overall structural complexity, but contain sub-

structures that are particularly difficult to explore. Typical examples are diamond structures, that arise due to the interleaving

semantics that is given to parallel components, and back-loops that appear due to recovery mechanisms or resets, etc.

5.1.1. Diamond structure

Diamond-structured state spaces are a known source of complexity for random-based search techniques [15]. The prob-

ability to enter into the outer ends of a diamond structure is virtually zero: the outermost states in a diamond of width n can

only be reached via 1 of the 2n−1 paths of length n − 1; in general,about 95% of the paths of length n − 1 lead to just over 40%

of the states at depth n.

Setup and analysis. Our experiments involve a diamond structure of width 10, shown in Fig. 2. The search objective is any

state numbered 1–10 (indicated in Fig. 2 by the states 1 and 10 and the remaining 8 states at the widest part of the diamond

structure). In our experiments, we analyse the probability of hitting one of the 10 numbered states in the state space by

conducting 1000 experiments for each search method and noting the average probability of hitting a given numbered state.

The resulting distributions of random search and highway searches of width 2, 4, 6, 8 and 10 are depicted in Fig. 2. A

1 See http://www.mcrl2.org.

http://www.mcrl2.org.
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Table 1 Results from the various experiments; the value for succ reports the percentage of successful searches; the value reported for state indicates the

average number of states required to find the searched state (measured only among the successful searches); the value reported for trace indicates the

average length of the trace that witnesses the searched state (again measured only among the successful traces). The search objectives for the respective

experiments were as follows: action ‘LDres’ (1394), action ‘c10’ (brp), action ‘CFSAP−out’ (commprot), action ‘protocol−error’ (lift-init), action ‘Draw’

(othello), and action ‘error’ (swp).

Random rdfs Highway 8 Highway 16 Highway 32

States Trace Succ. States Trace Succ. States Trace Succ. States Trace Succ. States Trace Succ.

1394(2) 3266 158 100 981 491 100 1154 174 88 2078 153 93 3439 125 95

1394(4) 4870 3777 100 2990 2501 99 1807 322 86 2047 175 99 3514 141 99

brp(10) 268 137 100 155 152 100 937 124 100 1441 94 100 2390 78 100

brp(30) 19885 311 75 382 361 100 1717 240 100 3089 209 100 5611 186 100

brp(50) 0 0 0 539 494 100 2345 341 100 4496 315 100 8415 286 100

brp(70) 0 0 0 690 629 100 3043 445 100 5809 413 100 11372 387 100

brp(90) 0 0 0 821 745 100 3593 542 100 7103 509 100 14094 486 100

commprot 1516 1517 100 4864 631 72 7418 929 100 13,181 825 97 16,441 515 90

lift-init(3) 13 14 2 553 14 100 87 13 31 149 13 58 257 13 93

lift-init(4) 0 0 0 1232 17 100 106 15 14 207 16 45 367 15 81

lift-init(5) 0 0 0 2438 19 100 119 17 2 253 18 30 461 17 65

lift-init(6) 0 0 0 6311 21 99 0 0 0 313 22 11 542 20 48

othello(4 × 4) 12 13 12 86 13 26 87 13 49 165 13 77 312 13 91

othello(6 × 6) 32 33 3 300 33 20 248 33 35 487 33 58 955 33 80

swp(2) 327 204 27 279 274 27 1217 154 26 2214 141 27 3161 102 27

swp(4) 1640 906 27 1570 1552 27 6307 790 27 12,794 802 27 13,374 421 27

swp(6) 4391 2372 27 3872 3844 27 14,986 1875 27 24,588 1540 27 29,377 922 27

swp(8) 7273 3315 27 8531 6500 25 21,419 2680 27 35,119 2198 26 48,052 1505 21

swp(10) 11,546 5642 27 16,327 8115 21 29,425 3681 26 45,012 2816 22 62,502 1957 12

randomised depth-first search yields a consistent 100% for all values as it explores all 100 states; this is due to the finiteness

of the state space. Likewise, a highway search ofwidth 10finds all numbered states, but compared to a randomiseddepth-first

search, the latter requires only half as many states to be explored.

The effect of the probabilistic approaches used in a random search and in highway searches of small width is clearly

visible in Fig. 2. As expected, a random search covers fewer states than a highway search and highway searches of increasing

width cover more states more often.

5.1.2. Back-loops

Back-loops occur frequently due to system resets and recovery mechanisms. A random search tends to revisit states instead

of exploring new states in such situations.

Setup and analysis. We used a back-loop system consisting of 47 states (see Fig. 3) to demonstrate the efficacy of all search

techniques in finding the (single) deadlock in the system. The plots in Fig. 3 show the probability of each search method of

finding the deadlock against the number of states that have been visited.

Note that randomised depth-first search performs quite good; only a highway search of width 5 performs better after 30

states have been investigated. The results of random search confirm its revisiting behaviour; even after 50 steps it cannot

find the deadlockwith a significant probability. A highway search of width 1 (not shown) is outperformed by all searches due

to the inability to revisit states. The results of highway searches show that each width has an optimum that can be achieved;

exploring more states does not lead to better detection rates, which again can be explained by the inability to revisit states.

5.1.3. Strongly connected components

Substructures that contain a strongly connected component “absorb” a probability-based search: the search is confined

to a single SCC. The behaviour of a highway search is, due to a more balanced search strategy that allows it to investigate

multiple SCCs, subtly different.

Setup and analysis. The state space we study consists of five reachable strongly connected components with single exits, see

Fig. 4. The impact of the number of states to be explored on each search method’s capability of finding one of the numbered

states is also depicted in Fig. 4.
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Fig. 3. Back-loop system of 47 states (left) and search results (right).

Randomised depth-first search, being an exhaustive searchmethod, examines each connected component only once (but

exhaustively) before turning its attention to another component. This causes the stepwise behaviour as shown in Fig. 4.

A highway search of width 1 slightly outperforms a random search as it will always find (precisely) one exit while random

search sometimes misses one because of revisits. At wider widths, a highway search starts to approach a randomised depth-

first search.

5.2. Applications

The results ofprevious sectiondonot straightforwardly transfer topractical situations, although theydoprovideadditional

intuition behind each search method’s capabilities. In this section, we study the effectiveness of the search techniques on

documented cases which are either inherently large or can be scaled up to become too large for model checking purposes.

We study the differences in typical coverage of the state spaces using all three searchmethods. Three systems are studied and

described in greater detail, as these clearly illustrate the differences in the search methods. Table 1 summarises the results

of a large number of experiments; in particular, it lists the percentage of successful searches, and for the successful searches,

it provides the average number of states and the average length of a witness for finding states of interest.

5.2.1. A network of buffers

The analysis of system performance is computationally quite costly or even intractable. As an example, we study the

performanceanalysis of anetworkof buffers. Variabilities suchasbuffer capacity, channel speeds,mutual exclusionprotocols,

etc. affect throughput in ways that are hard to predict.

Setup and analysis. The setup depicted in Fig. 5 is a simplification of a proprietary industrial protocol [4] for quickly collecting

data from a large number of distributed receivers; each buffer and channel in the network introduces its own delay, and a

mutual exclusion protocol is used to enforce singular communications between the buffer and the receiver (the Merge in

Fig. 5). Data arrives at the buffers and is propagated to the receiver as soon as the latter is capable of processing the data. We

search for extreme propagation times of 100 data units through the network configuration of Fig. 5.
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Fig. 5. A network configuration of depth 2 and width 3, with propagation times and channel delays in seconds.

Ourmodel of the network protocol terminates after 100 data units have been received by processMerge. Since the protocol

does not contain loops or cycles, each path in the protocol is finite and equally long (202 states). We set an upper bound of

202 × N on the number of states that are allowed to be explored by each search method (N depends on a highway search

width).

In Fig. 6 we report the minimal and maximal propagation times that are found by runs of each search method (limited

to 202 × N states). Comparing the intervals of propagation times that are reported by each search method, we find that a

highway search of width 2 is comparable to a random search, and outperformed by a randomised depth-first search. For

highway searches of width 1000 and 2000, we see that highway search ranks highest, followed by a randomised depth-

first search and finally random search. The difference in performance between wide highway searches (widths 1000 and

2000) on one end and randomised depth-first search on the other end is explained from the fact that a highway search

acts as a restricted breadth-first search, i.e. it covers a wide portion of the state space in a homogeneous fashion, whereas a

randomised depth-first search starts searching the behaviour of the network protocol given a single scenario, and performs

local back-tracing to find subtle variations on it. The poor coverage of a random search can be explained from the fact that

the structure of the state space of the network protocol has characteristics of a diamond structure.

Note that a single run is not necessarily representative for the extremities that can be found using random search or

highway search. Fig. 6 shows the number of occurrences of reported propagation times for 100 highway searches of width

1000 compared to a 100,000 random searches. It shows that a random search is less likely to find extreme values than a

highway search and that most values that are found by a random search are centred around a propagation time of 1100. The

graph of Fig. 6 does not contain a picture of a randomised depth-first search as the number of propagation times it finds

is several magnitudes larger; this is due to the fact that the finiteness of the protocol enables short back-trackings of the

randomised depth-first search, thereby reporting an extremely large number of (similar) propagation times.

5.2.2. Automated parking garage

In [14] an architecture for an automated parking garage is developed and verified. The main obstacles in verification of

the design is its very large state space. Instead of applying abstraction to reduce the state space to manageable proportions

(as was done in [14]), we analyse the original specification, which contains two known faults. A complicating factor in this

design is that the search space contains many loops and cycles.

Setup and analysis. We are interested in the (cumulative) probability of finding the error upon having examined a given

number of states, and a given simulation length, respectively.
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method RS RDFS HS

N (width)

1 1129 1056 1124

2 1065 – 1075 1043 – 1194 1142 – 1147

1000 1014 – 1194 1010 – 1246 1010 – 1265

2000 1016 – 1196 1017 – 1232 998 – 1284
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Fig. 6. Minimal and maximal propagation times found using random search, randomised depth-first search and highway search of widths 1, 2, 1000 and

2000 (left), and typical number of propagation times found by a random search and highway Search of width 1000.
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Fig. 7. Search results for the automated parking garage.

The results are depicted in Fig. 7. On average, a random simulation visiting 4000 states is needed to find the error. In

contrast, a highway search of width 1 outperforms random search significantly, requiring a simulation that visits less than

400 states to reach the error. A randomised depth-first search is most successful at finding the error quickly.

When we look at the simulation lengths that are required to find an error, a different picture emerges: we find that

a highway search of width 8 leads to shortest witnesses, followed by a random search. Using this metric, a randomised

depth-first search performs rather poorly. The difference can be explained from the breadth-first search-like characteristics

of highway search. The rather successful results of random search are likely to be linked to observations of [15], stating that

increasing the time spent in a random search has only a small effect on the number of new states that are visited; in this

sense, finding the error at some point means that it is relatively close to the initial state.

5.2.3. Dining philosophers

The dining philosophers problem is a problem that clearly illustrates the subtleties and complexity of synchronisation in

concurrency. An advantage of the problem is that it is highly scalable, yet always exhibits a single deadlocking situation. We

have examined two instances of the dining philosophers problem: an instance with 5 and an instance with 17 philosophers.

Setup and analysis. The deadlock search problem in the instance of the dining philosophers problem with 17 philosophers is

inspired by [5]. The results of a highway search of width 2–5 and a random search and a randomised depth-first search are

depicted in Fig. 8. Each search is terminated after exploring 5000 states, which explains why not all searches yield a 100%

chance of finding the deadlock.

Surprisingly, random search outperforms all other search techniques, and only 70% of the randomised depth-first searches

find the deadlock. Even more surprising is the observation that highway searches of greater width perform poorer than

highway searches of smaller width, meaning that the witnesses leading to the deadlock states become more complex at

increasing highway search widths.

We use the instance of five philosophers to further illustrate these findings. Apart from providing our findings for the

approximate highway search, we also provide our findings for the ideal highway search; this demonstrates that the observed



284 T.A.N. Engels et al. / Journal of Logic and Algebraic Programming 78 (2009) 274–287

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

length of trace

RS
RDFS
HW2
HW3
HW4
HW5

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

highway search width

approx.
normal

Fig. 8. Cumulative probability of finding the deadlock in the dining philosophers (instance 17) using various search methods (left), and total probability of

finding the deadlock in the dining philosopher’s problem (instance 5) at increasing highway widths and approximate highway widths.

phenomenon is not an artefact of the approximation algorithm. In Fig. 8, the width of a highway search (horizontal axis) is

plotted against the total probability of detecting the deadlock. The probability is obtained as an average of 4000 experiments

for each highway search width. Note that each search terminates, regardless of whether the deadlock is found or not. This is

due to the inevitable revisits of states, as the total state space is finite. Remark that for this experiment, we did not limit the

number of states that are allowed to be explored.

An explanation for this remarkable situation can be found in the unusual structure of the state space which has features

of the back-loops problem of the previous section. Increasing the width of a highway search increases the probability that

paths to the deadlocking state get disabled. Since one can only return to a path to a deadlock if one revisits a state earlier on

this path (which is impossible in a highway search), the total probability of reaching a deadlock decreases.

Note that Godefroid and Kurshid [5] also studied the dining philosophers problem with 17 philosophers; they compared

the efficacy of their genetic search algorithm against the performance of random search and concluded that their search

strategywas superior. In their experiments, they limited the runs of the random searches to explore 68 states before resetting

thesearch. Theauthors reportfindingnodeadlock in8hours run-timeusing randomsearch.Unfortunately,wecannot confirm

these findings using our tooling; on the contrary:wefind the deadlock in 20% of the caseswithin secondswhenusing random

searches of at most 68 states (see Fig. 8). It is unclear to us what causes these differences in observations. A separate analysis

conducted on our side confirms that our random search is as random as can possibly be achieved.

5.2.4. Benchmarks summary

The experiments conducted on the complex subsystems, and the previous three experiments suggest that in many

instances, a randomised depth-first search requires the least amount of states to find a state of interest in a given state

space. Highway search, on the other hand, often yields the shortest witnesses to states of interest. Table 1 substantiates these

findings: highway search consistently outperforms randomised depth-first search when it comes to finding short witnesses,

even at relatively small widths; on the other hand, a randomised depth-first search yields faster results. It is noteworthy that

random search also yields shorter witnesses compared to randomised depth-first search for 8 out of the 19 experiments and

performs equally well on another 3 experiments.

The experiments consist of instances of the bounded retransmission protocol [8] in which the timeout setting is varied;

Tanenbaum’s original faulty sliding window protocol [19] (see [2] for a formal specification; the fault is a nasty livelock) with

varying window sizes; the IEEE 1394-Firewire protocol [13] with a varying number of link layers; the conference protocol

(commprot) [1]; a distributed truck lift system [7] with varying number of lifts and the game Othello with a varying board

size. For all searches except for sliding window protocol, we limited the search to 50,000 states; the searches of the Sliding

Window Protocol are aborted at 80,000 states. For each problem instance, Table 1 notes the value specific parameter that is

used in between brackets.

6. Conclusion

We studied a novel search technique, called highway search. The search technique can be used to find states of interest

in large and infinite state spaces, and has the advantage over more dedicated techniques such as directed model checking

techniques that it does not require expert user knowledge.We have compared the efficacy of highway search with two other

push-button search techniques, viz. depth-first search and random search. A small study of the search techniques on small yet

commonly occurring substructures is conducted to obtain a better insight into the intricacies of the three search techniques.

A further comparison of all three search methods is done by means of an evaluation of the search techniques on large

state spaces that come from practice or appeared in the literature, see Section 5.2. Summarising the results, we find that
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randomised depth-first search is most efficient at finding states of interest fast (i.e., using the least number of states that

are visited), while a highway search clearly is the most appropriate tool for finding short witnesses that lead to the states of

interest.

The observed efficacy at finding interesting states fast of the randomised depth-first searchmethod confirms the findings

of [17], where it is furthermore suggested to use a randomised depth-first search as a yardstick for measuring the efficacy of

directed model-checking approaches. However, as we argue, efficiency is only a part of the goals in validation; explanation

of the findings is equally important, if not more so. Taking lengths of witnessing traces as a yardstick, highway search is the

more appropriate tool for comparing directed model checking techniques against. We remark that increasing the highway

searchwidth leads to shorter witnesses explaining the reachability of interesting state, at the cost ofmore states that need to

be explored. The limit case, where highway search and breadth-first search coincide is inmany cases not of practical interest

due to the large amount of memory required by a breadth-first search.

In order to reduce memory requirements and optimise time efficiency, we presented an alternative algorithm approxi-

mating a highway simulation (which underlies a highway search). We proved that under specific conditions, it faithfully

implements a highway simulation, and that its worst-case behaviour is significantly different from the ideal highway

simulation. In practice, this difference is hardly ever experienced, and, in the only case in which we found a significant

difference, we found that approximate highway search outperforms ideal highway search.

Appendix

A. Specifications of Complex (Sub)structures

In order to be able to repeat the experiments conducted in previous sections, we list all three complex substructure spec-

ifications given in mCRL2 of Section 5.1. The specifications that have been used in the experiments on practical applications

can be found online in the repositories of mCRL2.

Diamond structure

% A diamond structure of N+1 states wide;
% total size of the state space is (N+1)^2 states

map N : Int; eqn N = 9;

act report : Int;

proc X(i,j: Int) =
(i+j < N) -> (tau. X(i+1,j) + tau. X(i,j+1)) <> delta
+
(i+j >= N && i + j < 2*N+1) ->

(
(i + j == N ) -> report (j). X(i,j)

+
(i +j >= N && j < N) -> tau. X(i, j+1)

+
(i +j >= N && i < N) -> tau. X(i+1,j)
) <> delta;

init X(0,0);

Back-loops

% A system with a single trace to the end with backpointers to
% the root at all nodes in between.

map N : Int;
eqn N = 9; % N+1 is the deadlocking node
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act report:Int;

proc P(n : Int) =
(n < N) -> tau. P(n+1)

+ (n == N) -> tau. delta + (n > 0 && n <= N) -> Q(n-1,n-1) + (n ==
0) -> tau. P(n);

proc Q(n: Int, m: Int) =
(n == 0) -> tau. P(0)

+ (n >= 1) -> tau. Q(n -1,m);

init P(0);

Strongly connected components

% A system with an initial state and scc_num (=5) SCCs
% each SCC consists of scc_size (=5) states.

map scc_num, scc_size: Pos;
eqn scc_num = 5;

scc_size = 5;

act ini, scc, report: Pos;

proc P = sum id: Pos. (id <= scc_num) ->
ini(id).SCC(id,1,scc_size);

SCC(id: Pos, pos: Pos, size: Pos) =
sum new_pos: Pos.

(new_pos <= size && new_pos != pos) ->
scc(id).SCC(id,new_pos,size)

+ (pos == size) -> report(id).D(id);

D(id: Pos) = delta;

init P;

References

[1] A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, L. Heerink, Formal test automation: a simple experiment, in: G. Csopaki, S.
Dibuz, K. Tarnay (Eds.), Twelfth Int. Workshop on Testing of Communicating Systems, Kluwer Academic Publishers, 1999

[2] J. Brunekreef, A formal specification of three sliding window protocols, Tech. Rep. P9102, CWI (1991).
[3] M. Dwyer, S. Elbaum, S. Person, R. Purandare, Parallel randomized state-space search, in: Proceedings of ICSE’07, IEEE Computer Society, 2007.
[4] T. Engels, Analysis of the iRF Digital Network, Master’s thesis, Eindhoven University of Technology (2007).
[5] P. Godefroid, S. Khurshid, Exploring very large state spaces using genetic algorithms, in: J.P. Katoen, P. Stevens (Eds.), Proceedings of TACAS 2002 of,

LNCS, Vol. 2280, Springer-Verlag, 2002.
[6] A. Groce, W. Visser, Heuristics for model checking java programs, Software Tools for Technology Transfer 6 (4) (2004) 260–276.
[7] J. Groote, J. Pang, A. Wouters, Analysis of a distributed system for lifting trucks, Journal of Logic and Algebraic Programming. 55 (1–2) (2003) 21–56.
[8] J. Groote, J. van de Pol, A bounded retransmission protocol for large data packets, in: M.Wirsing, M. Nivat (Eds.), Proceedings of Algebraic Methodology

and Software Technology, 5th International Conference, AMAST ’96, vol. 1101 of Lecture Notes in Computer Science, Springer, 1996.
[9] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2004.

[10] M. Jones, J. Sorber, Parallel search for LTL violations, Software Tools for Technology Transfer 7 (2005) 31–42.
[11] S. Kupferschmid, K. Dräger, J. Hoffmann, B. Finkbeiner, H. Dierks, A. Podelski, G. Behrmann, Uppaal/DMC – Abstraction-based Heuristics for Directed

Model Checking, in: O. Grumberg, M. Huth (Eds.), Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems of, Lecture Notes in Computer Science, Vol. 4424, Springer-Verlag, Berlin Heidelberg, 2007.

[12] S. Kupferschmid, M. Wehrle, B. Nebel, A. Podelski, Faster than uppaal?, in: Proceedings of the 20th International Conference on Computer Aided
Verification (CAV 2008), vol. 5123 of Lecture Notes in Computer Science, Springer-Verlag, 2008.

[13] S. Luttik, Description and formal specification of the Link Layer of p1394, Tech. Rep. P9706, CWI (1997).
[14] A. Mathijssen, A. Pretorius, Verified design of an automated parking garage, in: L. Brim, B. Haverkort, M. Leucker, J. van de Pol (Eds.), Formal Methods:

Applications and Technology, of Lecture Notes in Computer Science, Vol. 4346, Springer, 2007.



T.A.N. Engels et al. / Journal of Logic and Algebraic Programming 78 (2009) 274–287 287
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