
Structural Operational Semantics
with

First-Order Logic

Muck van Weerdenburg and Michel Reniers

Prose October 25, 2007

Outline

Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format

Structural Operational Semantics with First-Order Logic
Syntax and Semantics
Well-Definedness
Congruence Format

Summary

Introduction - Structural Operational Semantics (SOS)

SOS allows for intuitive definition of operational semantics.

Operational semantics typically in terms of transition systems.

Popular for giving semantics to

• programming languages,

• process algebra,

• Petri nets,

• etc.

Introduction - Structural Operational Semantics (SOS)

Semantics is defined with rules.

“If P, then c”:
P

c

Set P of premises consists of positive and negative statements.
(x

a→ x ′ and x
a9)

Conclusion c is a (positive) statement.

Introduction - SOS formats

There exist (syntactic) formats.

• ntyft/ntyxt

• PANTH

• RBB-Cool

• etc.

These formats guarantee certain properties.

(Typically congruence of strong bisimilarity.)

Introduction - Example SOS

a.x
a→ x

x
a→ x ′

x + y
a→ x ′

x
a→ x ′

y + x
a→ x ′

x
a9

x
√

Rules are in ntyft/ntyxt format.

Strong bisimilarity is a congruence.

Introduction - SOS and quantifications

A predicate “is in a deadlock”:

“We say that a process is in a deadlock [. . .] if it cannot
do any action. That is, if p is such a process, we have
that p

a9 q and p
a9
√

for every a, q; [. . .].”

J.C.M. Baeten and J.A. Bergstra. Processen en procesexpressies.
Informatie, 30(3):214–222, 1988.

Introduction - SOS and quantifications

A weak termination predicate
√√

:

p
√√
⇔

{
(i) p

τ9 and p
√

, or

(ii) p
τ→ and, for each q, p

τ→ q implies q
√√

.

Luca Aceto and Matthew Hennessy. Termination, deadlock, and
divergence. Journal of the ACM, 39(1):147–187, 1992.

Introduction - SOS and quantifications

A semantically divergence predicate ⇓:

p ↓ and (for each q, p
τ→ q implies q ⇓) imply p ⇓

Luca Aceto and Matthew Hennessy. Termination, deadlock, and
divergence. Journal of the ACM, 39(1):147–187, 1992.

Introduction - SOS and quantifications

M.R. Mousavi and M. Reniers gave a solution.

• Syntax is quite restricted:

∃−→x ∀−→y ∃−→z
. . . ∧ . . . ∨ . . .

t
a→ u

• Unintuitive semantics (via translation to traditional rules).

• Certain other peculiarities.

M.R. Mousavi and M. Reniers. A Congruence Rule Format with
Universal Quantification. Proceedings of SOS’07, (to appear).

Outline

Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format

Structural Operational Semantics with First-Order Logic
Syntax and Semantics
Well-Definedness
Congruence Format

Summary

Traditional SOS - Syntax

Variables x , y , . . .
Functions f , g , 0, 1, δ,+, . . .

T ::= x | f (T , . . . ,T)

Predicates P,Q,
a→ ,
√
, . . .

atom ::= P(T , . . . ,T) | ¬P(T) | ¬P(T ,) | ??

Special negation t
a9 (“there is no u such that t

a→ u”)

Rule
S

a
(where S is a set of atoms, a a positive atom)

Traditional SOS - Semantics

Derivability of an atom a given set of assumptions A.

`
A

a

if:

• a ∈ A, or

• there is are rule
S

b
and substitution σ with

• a = bσ and

• for all c ∈ S `
A

cσ

Traditional SOS - Semantics

`
∅

a.0 + 0
a→ 0

⇐ rule
x

a→ x ′

x + y
a→ x ′

and σ = {x 7→ a.0, x ′ 7→ 0, y 7→ 0}

`
∅

a.0
a→ 0

⇐ rule
a.x

a→ x
and σ = {x 7→ 0}

true

Traditional SOS - Semantics

`
{0 a9 }

0
√

⇐ rule
x

a9
x
√ and σ = {x 7→ 0}

`
{0 a9 }

0
a9

⇐ 0
a9 ∈ {0 a9 }

true

Traditional SOS - Semantics

Negative statements can cause problems:

¬P

P

We consider three-valued models 〈C ,U〉.

C is “Certainly true”, U is “Unknown”.
((C ∪ U)−1 is “certainly false.”)

Above rule as three-valued model: 〈∅, {P}〉

Traditional SOS - Semantics

We write A � a if a ∈ A and A � t 9 if there is no u with
t→ u ∈ A. We also rewrite A � S if A � s for each s ∈ S .

〈C ,U〉 is a three-valued stable model if

• a ∈ C if, and only if, `
N

a
for some N with C ∪ U � N

• a ∈ C ∪ U if, and only if, `
N

a
for some N with C � N

(N is a set of negative atoms here.)

Interested in (information-)least three-valued stable model.

Traditional SOS - Well-Definedness

Generally we are only interested in two-valued models.

That is, models 〈C ,U〉 where U = ∅.

How to determine that a three-valued model is actually
two-valued?

Traditional SOS - Well-Definedness

A stratification is a function f of positive atoms to a set S if

• S is well-ordered
(i.e. there is no infinite sequence s > s ′ > . . .)

• for all rules
S

a
and substitutions σ we have that

• b ∈ S implies f (bσ) ≤ f (aσ)

• t
a9 ∈ S implies f (tσ

a→ u) < f (aσ) for all u

If there is a stratification, then the model is two-valued.

Traditional SOS - Well-Definedness

a.x
a→ x

x
a→ x ′

x + y
a→ x ′

x
a→ x ′

y + x
a→ x ′

x
a9

x
√

f (t
a→ u) = 0 f (t

√
) = 1

Traditional SOS - Well-Definedness

¬P

P

f (P) < f (P)

Traditional SOS - Well-Definedness

P

¬P

P

f (P) < f (P)

Least three-valued stable model is 〈{P}, ∅〉!

Traditional - Well-Definedness

Why ≤ for positives and < for negatives?

Essence is limiting the number of steps in three-valued model
definition:

1. a ∈ C if `
N

a
and C ∪ U � N.

2. for ¬b ∈ N, b ∈ C ∪ U if `
N ′

b
and C � N ′

3. for ¬c ∈ C , c ∈ C if . . .

4. . . .

The ≤ for positives is to get f (b) < f (a) for b ∈ N of `
N

a
.

Traditional SOS - Congruence Format

If all rules are of the form:

{ti
a→ yi : i ∈ I} ∪ {tj

a9 : j ∈ J}

f (x1, . . . xn)
a→ t

,

with all x1, . . . , xn and yi (i ∈ I) distinct,

then strong bisimilarity is a congruence for all f .
(i.e. if pi ↔ qi for 1 ≤ i ≤ n, then f (p1, . . . , pn)↔ f (q1, . . . , qn))

Outline

Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format

Structural Operational Semantics with First-Order Logic
Syntax and Semantics
Well-Definedness
Congruence Format

Summary

Structural Operational Semantics with First-Order Logic

We want quantifications, implications etc.

That is, we want first-order logic formulae.

We also want it to be an extension of traditional SOS.

Finally, we want to lever traditional notions to this setting.

Infinitary First-Order Kleene Logic - Syntax

We want first-order logic in premises:

ϕ ::= a | ¬ϕ |
∧
{ϕ, . . .} | ∀xϕ

Other operators are considered sugar:

true =
∧
∅, x ∨ y = ¬

∧
{¬x ,¬y}, etc.

Literals atoms or negation of atoms. (I.e. no more t
a9 .)

Infinitary First-Order Kleene Logic - Semantics

Set A makes ϕ true (A � ϕ):

A � a iff a ∈ A
A � ¬ψ iff A 6� ψ
A �

∧
Ψ iff for all ψ ∈ Ψ, A � ψ

A � ∀xψ iff for all term t, A � ψ[t/x]

Set A makes ϕ false (A 6� ϕ):

A 6� a iff ¬a ∈ A
A 6� ¬ψ iff A � ψ
A 6�

∧
Ψ iff there is a ψ ∈ Ψ with A 6� ψ

A 6� ∀xψ iff there is a t with A 6� ψ[t/x]

FOL-SOS - Syntax

ϕ

a

FOL-SOS - Syntax

A predicate “is in a deadlock”:

“We say that a process is in a deadlock [. . .] if it cannot
do any action. That is, if p is such a process, we have
that p

a9 q and p
a9
√

for every a, q; [. . .].”

∧
a∈A(∀y (¬ x

a→ y) ∧ ¬ x
a→
√

)

δ(x)

FOL-SOS - Syntax

A weak termination predicate
√√

:

p
√√
⇔

{
(i) p

τ9 and p
√

, or

(ii) p
τ→ and, for each q, p

τ→ q implies q
√√

.

∀y (¬ x
τ→ y) ∧ x

√

x
√√

∃y (x
τ→ y) ∧ ∀y (x

τ→ y ⇒ y
√√

)

x
√√

FOL-SOS - Syntax

A semantically divergence predicate ⇓:

p ↓ and (for each q, p
τ→ q implies q ⇓) imply p ⇓

x ↓ ∧∀y (x
τ→ y ⇒ y ⇓)

x ⇓

FOL-SOS - Syntax

Mousavi & Reniers have to write

∀y

∧
a∈A(x

a9 y ∧ x
a9
√

)

δ(x)

for ∧
a∈A(∀y (¬ x

a→ y) ∧ ¬ x
a→
√

)

δ(x)

FOL-SOS - Syntax

Mousavi & Reniers have to write

∀y
x
τ9 y ∧ x

√

x
√√ ∃y∀z

x
τ→ y ∧ (x

τ9 z ∨ z
√√

)

x
√√

for

∀y (¬ x
τ→ y) ∧ x

√

x
√√

∃y (x
τ→ y) ∧ ∀y (x

τ→ y ⇒ y
√√

)

x
√√

FOL-SOS - Syntax

Mousavi & Reniers have to write

∀y
x ↓ ∧(x

τ9 y ∨ y ⇓)

x ⇓
for

x ↓ ∧∀y (x
τ→ y ⇒ y ⇓)

x ⇓

FOL-SOS - Semantics

Derivability of an literal l given set of assumptions A.

A ` l

if:

• l ∈ A, or

• there is are rule
ϕ

a
, set S and substitution σ with

• l = aσ and
• S � ϕσ and
• for all b ∈ S , A ` b

FOL-SOS - Semantics

{¬P} ` Q

⇐ rule
¬P ∧ ∃xR(x)

Q
and S = {¬P,R(c)}

{¬P} ` ¬P and {¬P} ` R(c)

⇐ ¬P ∈ {¬P} and rule
true
R(c)

and S = ∅

true

FOL-SOS - Semantics

We write rewrite A � L if A � l for each l ∈ L.

〈C ,U〉 is a three-valued stable model if

• a ∈ C if, and only if, N ` a for some N with C ∪ U � N

• a ∈ C ∪ U if, and only if, N ` a for some N with C � N

(N is a set of negative literals here.)

FOL-SOS - Semantics

Trivial translation of traditional to FOL-SOS:

S

a
7→

∧
S ′

a

S ′ is S with all t
a9 replaced by ∀x(¬ t

a→ x)

FOL-SOS - Semantics

From FOL-SOS to traditional SOS is possible for well-defined
specifications.

Trivially: 〈C , ∅〉 gives {
a

: a ∈ C}.

When not well-defined:

a→ a b→ b

¬b→ a

a→ b

¬a→ b

b→ a

Not possible with just a 9 and b 9 .

FOL-SOS - Semantics
Mousavi & Reniers:

For each deduction rule r of the following form,

∃ez0
∀ez1
∃ez2

∨
i∈I

∧
j∈J φij

t
l→ t ′

sk(r) is sk(r , σ0, σ10, . . . , σ20, . . . , i0, . . . | ij) for each substitution
σ0 : z̃0 → C, substitutions σ10, σ11, . . . : z̃1 → C such that for each
z ∈ z̃1, {σ10(z), σ11(z), . . .} = C, substitutions
σ20, σ21, . . . : z̃2 → C, indices i0, i1, . . . ∈ I and each
ij ∈ {i0, i1, . . .} which is defined as follows.

(
∧

j∈J σ0 · σ10 · σ20φi0j) ∧ (
∧

j∈J σ0 · σ11 · σ21φi1j) ∧ . . .

σ0 · σ1ij · σ2ij (t
l→ t ′)

FOL-SOS - Well-Definedness

How to define stratifications w.r.t. formulae?

Looking at semantics: every S such that S � ϕ.

Such sets S take role of premises in derivations.

But how to obtain such sets?

FOL-SOS - Well-Definedness

Easier: use set of literals that occur in ϕ:

Lit(a) = {a}
Lit(¬ϕ) = Lit(ϕ)
Lit(

∧
Φ) =

⋃
ϕ∈Φ Lit(ϕ)

Lit(∀xϕ) =
⋃

t Lit(ϕ[t/x])

Lit(a) = {¬a}
Lit(¬ϕ) = Lit(ϕ)
Lit(

∧
Φ) =

⋃
ϕ∈Φ Lit(ϕ)

Lit(∀xϕ) =
⋃

t Lit(ϕ[t/x])

FOL-SOS - Well-Definedness

A stratification is a function f of positive atoms to a set S if

• S is well-ordered
(i.e. there is no infinite sequence s > s ′ > . . .)

• for all rules
ϕ

a
and substitutions σ we have that

• b ∈ Lit(ϕ) implies f (bσ) ≤ f (aσ)

• ¬b ∈ Lit(ϕ) implies f (bσ) < f (aσ)

If there is a stratification, then the model is two-valued.

FOL-SOS - Well-Definedness

x ↓ ∧∀y (x
τ→ y ⇒ y ⇓)

x ⇓

Lit(x ↓ ∧∀y (x
τ→ y ⇒ y ⇓)) = {x ↓} ∪

⋃
t

{¬x
τ→ t, t ⇓}

f (t ↓) = 0 f (t
τ→ u) = 0 f (t ⇓) = 1

FOL-SOS - Congruence Format

ϕ

f (x1, . . . xn)
a→ t

,

1. The right-hand sides of literals in ϕ are distinct variables
different from x1, . . . , xn;

2. the right-hand sides of positive literals in ϕ are existentially
bound;

3. the right-hand sides of negative literals in ϕ are universally
bound;

4. the right-hand side variable of positive literals are bound inside
the scope of the variables of the left-hand side of that literal.

FOL-SOS - Congruence Format

ϕ

f (x1, . . . xn)
a→ t

,

The right-hand sides of literals in ϕ are distinct variables different
from x1, . . . , xn.

x1
a→ y ∧ y

b→ z

x1
a→ x2

∃x3(x1
a→ x3) ∨ ∀x3(x2

a→ x3)

∃y (x1
a→ y ∨ ∀y (x2

a→ y))

∃y (x1
a→ y ∨ x2

a→ y)

FOL-SOS - Congruence Format

dv(ϕ) ∧ ubrhs(ϕ) ∩ {x1, . . . , xn} = ∅

dv(t→ u) = u ∈ V
dv(¬ψ) = dv(ψ)
dv(

∧
Ψ) = ∀ψ∈Ψdv(ψ) ∧

∀ψ,ψ′∈Ψ(ψ 6= ψ′ ⇒ ubrhs(ψ) ∩ ubrhs(ψ′) = ∅)
dv(∀xψ) = dv(ψ)

ubrhs(t→ u) = var(u)
ubrhs(¬ψ) = ubrhs(ψ)
ubrhs(

∧
Ψ) =

⋃
ψ∈Ψ ubrhs(ψ)

ubrhs(∀xψ) = ubrhs(ψ) \ {x}

FOL-SOS - Congruence Format

ϕ

f (x1, . . . xn)
a→ t

,

The right-hand sides of positive literals in ϕ are existentially bound.

x1
a→ y

∃y (x1
a→ y)

∀y (x1
a→ y)

∀y (x2
a→ y ⇒ x1

a→ z)

∀y (x2
a→ z ⇒ x1

a→ y)

FOL-SOS - Congruence Format

extFV(ϕ)\{x1,...,xn}(ϕ)

extS(t→ u) = u ∈ S
extS(¬ψ) = extS(ψ)
extS(

∧
Ψ) = ∀ψ∈ΨextS(ψ)

extS(∀xψ) = extS\{x}(ψ)

extS(t→ u) = true
extS(¬ψ) = extS(ψ)
extS(

∧
Ψ) = ∀ψ∈ΨextS(ψ)

extS(∀xψ) = extS∪{x}(ψ)

FOL-SOS - Congruence Format

ϕ

f (x1, . . . xn)
a→ t

,

The right-hand sides of negative literals in ϕ are universally bound.

¬x1
a→ y

∀y (¬x1
a→ y)

∀y (x2
a→ y ⇒ x1

a→ z)

∀y (x2
a→ z ⇒ x1

a→ y)

FOL-SOS - Congruence Format

ext∅(¬ϕ)

FOL-SOS - Congruence Format

ϕ

f (x1, . . . xn)
a→ t

,

The right-hand side variable of positive literals are bound inside
the scope of the variables of the left-hand side of that literal.

∃z(∀y (y
a→ z))

∀y (∃z(y
a→ z))

∃y (∃z(z
a→ y))

∃y (∀w (∃z(z
a→ y)))

FOL-SOS - Congruence Format

hFV(ϕ)\{x1,...,xn}(ϕ)

hS(t→ u) = true
hS(¬ϕ) = h

S
(ϕ)

hS(
∧

Φ) = ∀ϕ∈ΦhS(ϕ)

hS(∀xϕ) = h∅(ϕ) ∧ kS
{x}(ϕ)

h
S

(t→ u) = true
h

S
(¬ϕ) = hS(ϕ)

h
S

(
∧

Φ) = ∀ϕ∈Φh
S

(ϕ)

h
S

(∀xϕ) = h
S∪{x}

(ϕ)

kS
T (t→ u) = (u ∈ S \ T)⇒ (var(t) ∩ T = ∅)

kS
T (¬ϕ) = kS

T (ϕ)
kS
T (

∧
Φ) = ∀ϕ∈ΦkS

T (ϕ)
kS
T (∀xϕ) = kS

T∪{x}(ϕ)

FOL-SOS - Congruence Format

The examples all fit our congruence format.

∧
a∈A(∀y (¬ x

a→ y) ∧ ¬ x
a→
√

)

δ(x)

∀y (¬ x
τ→ y) ∧ x

√

x
√√

∃y (x
τ→ y) ∧ ∀y (x

τ→ y ⇒ y
√√

)

x
√√

x ↓ ∧∀y (x
τ→ y ⇒ y ⇓)

x ⇓

FOL-SOS - Congruence Format

Traditional format is incorporated:

1. The right-hand sides of literals in ϕ are distinct variables
different from x1, . . . , xn; ⇐ traditional distinctness
requirement

2. the right-hand sides of positive literals in ϕ are existentially
bound; ⇐ trivially

3. the right-hand sides of negative literals in ϕ are universally
bound; ⇐ only quantifications: ∀x(¬ t

a→ x)

4. the right-hand side variable of positive literals are bound
inside the scope of the variables of the left-hand side of that
literal. ⇐ no (nested) quantifications

FOL-SOS - Congruence Format

Mousavi & Reniers format (UNTyft/UnTyxt) is incorporated:

1. The right-hand sides of literals in ϕ are distinct variables
different from x1, . . . , xn; ⇐ same

2. the right-hand sides of positive literals in ϕ are existentially
bound; ⇐ same

3. the right-hand sides of negative literals in ϕ are universally
bound; ⇐ same

4. the right-hand side variable of positive literals are bound
inside the scope of the variables of the left-hand side of that
literal. ⇐ simpler variant due to ∃−→x ∀−→y ∃−→z

Outline

Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format

Structural Operational Semantics with First-Order Logic
Syntax and Semantics
Well-Definedness
Congruence Format

Summary

Summary

• Full first-order power in premises of rules

• Straightforward extension of semantics

• Conservative extension of traditional SOS (with sugar)

• Conservative extension of traditional congruence format

• Congruence format requirements easily calculable

• Suits known examples using quantifications

Thank you for your attention!

	Outline
	Introduction
	Traditional Structural Operational Semantics
	Syntax and Semantics
	Well-Definedness
	Congruence Format

	Structural Operational Semantics with First-Order Logic
	Syntax and Semantics
	Well-Definedness
	Congruence Format

	Summary

