

# Structural Operational Semantics with First-Order Logic

#### Muck van Weerdenburg and Michel Reniers

Prose October 25, 2007

/department of mathematics and computer science



# Outline

Introduction

Traditional Structural Operational Semantics Syntax and Semantics Well-Definedness Congruence Format

Structural Operational Semantics with First-Order Logic Syntax and Semantics Well-Definedness Congruence Format

Summary



# Introduction - Structural Operational Semantics (SOS)

SOS allows for intuitive definition of operational semantics.

Operational semantics typically in terms of transition systems.

Popular for giving semantics to

- programming languages,
- process algebra,
- Petri nets,
- etc.



Introduction - Structural Operational Semantics (SOS)

Semantics is defined with rules.

"If P, then c": -

Set *P* of premises consists of positive and negative statements.  $(x \xrightarrow{a} x' \text{ and } x \xrightarrow{a})$ 

Conclusion c is a (positive) statement.



# Introduction - SOS formats

There exist (syntactic) formats.

- ntyft/ntyxt
- PANTH
- RBB-Cool
- etc.

These formats guarantee certain properties.

(Typically congruence of strong bisimilarity.)



### Introduction - Example SOS

$$\frac{x \xrightarrow{a} x'}{a.x \xrightarrow{a} x} \qquad \frac{x \xrightarrow{a} x'}{x + y \xrightarrow{a} x'} \qquad \frac{x \xrightarrow{a} x'}{y + x \xrightarrow{a} x'} \qquad \frac{x \xrightarrow{a}}{x \sqrt{x}}$$

#### Rules are in ntyft/ntyxt format.

Strong bisimilarity is a congruence.



A predicate "is in a deadlock":

"We say that a process is in a deadlock [...] if it cannot do any action. That is, if p is such a process, we have that  $p \xrightarrow{a} q$  and  $p \xrightarrow{a} \sqrt{}$  for every a, q; [...]."

J.C.M. Baeten and J.A. Bergstra. Processen en procesexpressies. *Informatie*, 30(3):214–222, 1988.



A weak termination predicate  $\sqrt{}$ :

$$p \checkmark \Leftrightarrow \begin{cases} (i) & p \xrightarrow{\tau} \text{ and } p \checkmark, \text{ or} \\ (ii) & p \xrightarrow{\tau} \text{ and, for each } q, p \xrightarrow{\tau} q \text{ implies } q \checkmark \end{cases}$$

Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. *Journal of the ACM*, 39(1):147–187, 1992.



A semantically divergence predicate  $\Downarrow$ :

 $p \downarrow$  and (for each  $q, p \xrightarrow{\tau} q$  implies  $q \Downarrow$ ) imply  $p \Downarrow$ 

Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. *Journal of the ACM*, 39(1):147–187, 1992.



M.R. Mousavi and M. Reniers gave a solution.

• Syntax is quite restricted:

$$\exists_{\overrightarrow{x}} \forall_{\overrightarrow{y}} \exists_{\overrightarrow{z}} \frac{\dots \wedge \dots \vee \dots}{t \stackrel{a}{\to} u}$$

- Unintuitive semantics (via translation to traditional rules).
- Certain other peculiarities.

M.R. Mousavi and M. Reniers. A Congruence Rule Format with Universal Quantification. *Proceedings of SOS'07*, (to appear).



# Outline

Introduction

#### Traditional Structural Operational Semantics Syntax and Semantics Well-Definedness Congruence Format

Structural Operational Semantics with First-Order Logic Syntax and Semantics Well-Definedness Congruence Format

Summary



TU/e

technische universiteit eindhoven

Variables  $x, y, \ldots$ Functions  $f, g, 0, 1, \delta, +, \ldots$ 

$$T ::= x \mid f(T, \ldots, T)$$

Predicates  $P, Q, \stackrel{a}{\rightarrow}, \sqrt{, \ldots}$ 

atom ::=  $P(T, ..., T) | \neg P(T) | \neg P(T, ..) |$ ?? Special negation  $t \xrightarrow{a}$  ("there is no u such that  $t \xrightarrow{a} u$ ")

Rule 
$$\frac{S}{a}$$
 (where S is a set of atoms, a a positive atom



Derivability of an atom a given set of assumptions A.

$$\vdash -$$
  
a

if:

- $a \in A$ , or
- there is are rule  $\frac{S}{b}$  and substitution  $\sigma$  with •  $a = b\sigma$  and • for all  $c \in S \vdash \frac{A}{2\pi}$



$$\vdash \frac{\emptyset}{a.0 + 0 \stackrel{a}{\rightarrow} 0}$$

$$\Leftarrow \quad rule \frac{x \stackrel{a}{\rightarrow} x'}{x + y \stackrel{a}{\rightarrow} x'} \text{ and } \sigma = \{x \mapsto a.0, x' \mapsto 0, y \mapsto 0\}$$

$$\vdash \frac{\emptyset}{a.0 \stackrel{a}{\rightarrow} 0}$$

$$\Leftarrow \quad rule \frac{x}{a.x \stackrel{a}{\rightarrow} x} \text{ and } \sigma = \{x \mapsto 0\}$$
true



 $\vdash \frac{\{0 \xrightarrow{a}\}}{0}$ rule  $\frac{x \stackrel{a}{\leftrightarrow}}{x \sqrt{}}$  and  $\sigma = \{x \mapsto 0\}$  $\Leftarrow$  $\vdash \frac{\{0 \stackrel{a}{\not\rightarrow}\}}{0 \stackrel{a}{\not\rightarrow}}$  $\Leftarrow \qquad 0 \stackrel{a}{\not\rightarrow} \in \{0 \stackrel{a}{\not\rightarrow}\}$ 

#### true



Negative statements can cause problems:

 $\frac{\neg P}{P}$ 

We consider three-valued models  $\langle C, U \rangle$ .

C is "Certainly true", U is "Unknown".  $((C \cup U)^{-1}$  is "certainly false.")

Above rule as three-valued model:  $\langle \emptyset, \{P\} \rangle$ 



We write  $A \vDash a$  if  $a \in A$  and  $A \vDash t \nleftrightarrow$  if there is no u with  $t \to u \in A$ . We also rewrite  $A \vDash S$  if  $A \vDash s$  for each  $s \in S$ .

 $\langle {\it C}, {\it U} \rangle$  is a three-valued stable model if

• 
$$a \in C$$
 if, and only if,  $\vdash \frac{N}{a}$  for some  $N$  with  $C \cup U \models N$   
•  $a \in C \cup U$  if, and only if,  $\vdash \frac{N}{a}$  for some  $N$  with  $C \models N$   
V is a set of negative atoms here.)

Interested in (information-)least three-valued stable model.

(|



Generally we are only interested in two-valued models.

That is, models  $\langle C, U \rangle$  where  $U = \emptyset$ .

How to determine that a three-valued model is actually two-valued?



A stratification is a function f of positive atoms to a set S if

- S is well-ordered
   (i.e. there is no infinite sequence s > s' > ...)
- for all rules  $\frac{S}{a}$  and substitutions  $\sigma$  we have that
  - $b \in S$  implies  $f(b\sigma) \leq f(a\sigma)$
  - $t \stackrel{a}{\nrightarrow} \in S$  implies  $f(t\sigma \stackrel{a}{\rightarrow} u) < f(a\sigma)$  for all u

If there is a stratification, then the model is two-valued.



$$\frac{x \xrightarrow{a} x'}{a.x \xrightarrow{a} x} \qquad \frac{x \xrightarrow{a} x'}{x + y \xrightarrow{a} x'} \qquad \frac{x \xrightarrow{a} x'}{y + x \xrightarrow{a} x'} \qquad \frac{x \xrightarrow{a}}{x \sqrt{x}}$$

$$f(t \xrightarrow{a} u) = 0 \qquad f(t \sqrt{}) = 1$$



 $\frac{\neg P}{P}$ 

### f(P) < f(P)

/department of mathematics and computer science



$$- \frac{\neg P}{-}$$
  
P P

f(P) < f(P)

Least three-valued stable model is  $\langle \{P\}, \emptyset \rangle$ !

/department of mathematics and computer science



Why  $\leq$  for positives and < for negatives?

Essence is limiting the number of steps in three-valued model definition:

1. 
$$a \in C$$
 if  $\vdash \frac{N}{a}$  and  $C \cup U \models N$ .  
2. for  $\neg b \in N$ ,  $b \in C \cup U$  if  $\vdash \frac{N'}{b}$  and  $C \models N'$   
3. for  $\neg c \in C$ ,  $c \in C$  if ...  
4. ...

The  $\leq$  for positives is to get f(b) < f(a) for  $b \in N$  of  $\vdash \frac{N}{a}$ .



# Traditional SOS - Congruence Format

If all rules are of the form:

$$\frac{\{t_i \xrightarrow{a} y_i : i \in I\} \cup \{t_j \xrightarrow{a} : j \in J\}}{f(x_1, \dots, x_n) \xrightarrow{a} t},$$

with all  $x_1, \ldots, x_n$  and  $y_i$   $(i \in I)$  distinct,

then strong bisimilarity is a congruence for all f. (i.e. if  $p_i \leftrightarrow q_i$  for  $1 \le i \le n$ , then  $f(p_1, \ldots, p_n) \leftrightarrow f(q_1, \ldots, q_n)$ )



# Outline

Introduction

Traditional Structural Operational Semantics Syntax and Semantics Well-Definedness Congruence Format

Structural Operational Semantics with First-Order Logic Syntax and Semantics Well-Definedness Congruence Format

Summary



Structural Operational Semantics with First-Order Logic

We want quantifications, implications etc.

That is, we want first-order logic formulae.

We also want it to be an extension of traditional SOS.

Finally, we want to lever traditional notions to this setting.



# Infinitary First-Order Kleene Logic - Syntax

We want first-order logic in premises:

$$\varphi ::= a \mid \neg \varphi \mid \bigwedge \{\varphi, \ldots\} \mid \forall_x \varphi$$

Other operators are considered sugar:

true = 
$$\bigwedge \emptyset$$
,  $x \lor y = \neg \bigwedge \{\neg x, \neg y\}$ , etc.

Literals atoms or negation of atoms. (I.e. no more  $t \stackrel{a}{\nrightarrow}$ .)



Set A makes  $\varphi$  true  $(A \vDash \varphi)$ :

TU/e

technische universiteit eindhoven

$$\begin{array}{lll} A \vDash a & \text{iff} & a \in A \\ A \vDash \neg \psi & \text{iff} & A \nvDash \psi \\ A \vDash \bigwedge \Psi & \text{iff} & \text{for all } \psi \in \Psi, A \vDash \psi \\ A \vDash \forall_{\mathsf{x}} \psi & \text{iff} & \text{for all term } t, A \vDash \psi[t/\mathsf{x}] \end{array}$$

Set A makes  $\varphi$  false  $(A \not\models \varphi)$ :

$$\begin{array}{lll} A \not\vDash a & \text{iff} & \neg a \in A \\ A \not\vDash \neg \psi & \text{iff} & A \vDash \psi \\ A \not\vDash \bigwedge \Psi & \text{iff} & \text{there is a } \psi \in \Psi \text{ with } A \not\vDash \psi \\ A \not\vDash \bigvee_x \psi & \text{iff} & \text{there is a } t \text{ with } A \not\vDash \psi[t/x] \end{array}$$



 $\varphi$ -

/department of mathematics and computer science



A predicate "is in a deadlock":

"We say that a process is in a deadlock [...] if it cannot do any action. That is, if p is such a process, we have that  $p \xrightarrow{a} q$  and  $p \xrightarrow{a} \sqrt{}$  for every a, q; [...]."

$$\frac{\bigwedge_{a\in A}(\forall_y(\neg x \xrightarrow{a} y) \land \neg x \xrightarrow{a} \sqrt{)}}{\delta(x)}$$



A weak termination predicate  $\sqrt{}$ :

$$p \checkmark \Leftrightarrow \begin{cases} \text{(i)} & p \xrightarrow{\tau} \text{ and } p \checkmark, \text{ or} \\ \text{(ii)} & p \xrightarrow{\tau} \text{ and, for each } q, p \xrightarrow{\tau} q \text{ implies } q \checkmark \checkmark. \end{cases}$$
$$\frac{\forall_y (\neg x \xrightarrow{\tau} y) \land x \checkmark}{x \checkmark} \qquad \frac{\exists_y (x \xrightarrow{\tau} y) \land \forall_y (x \xrightarrow{\tau} y \Rightarrow y \checkmark)}{x \checkmark}$$



A semantically divergence predicate  $\Downarrow$ :

 $p \downarrow$  and (for each  $q, p \xrightarrow{\tau} q$  implies  $q \Downarrow$ ) imply  $p \Downarrow$ 

$$\frac{x\downarrow\wedge\forall_y(x\stackrel{\tau}{\rightarrow}y\Rightarrow y\Downarrow)}{x\Downarrow}$$



#### Mousavi & Reniers have to write

$$\forall_{y} \frac{\bigwedge_{a \in \mathcal{A}} (x \xrightarrow{a} y \land x \xrightarrow{a} \sqrt{)}}{\delta(x)}$$

for

$$\frac{\bigwedge_{a\in\mathcal{A}}(\forall_y(\neg x \xrightarrow{a} y) \land \neg x \xrightarrow{a} \sqrt{)}}{\delta(x)}$$



for

#### Mousavi & Reniers have to write





#### Mousavi & Reniers have to write

$$\forall_{y} \frac{x \downarrow \land (x \xrightarrow{\tau} y \lor y \Downarrow)}{x \Downarrow}$$

for

$$\frac{x \downarrow \land \forall_y (x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow}$$



# FOL-SOS - Semantics

#### Derivability of an literal I given set of assumptions A.

 $A \vdash I$ 

#### if:

- $I \in A$ , or
- there is are rule  $\frac{\varphi}{2}$ , set S and substitution  $\sigma$  with
  - $I = a\sigma$  and
  - $S \vDash \varphi \sigma$  and
  - for all  $b \in S$ ,  $A \vdash b$



 $\{\neg P\} \vdash Q$   $\Leftarrow \quad rule \ \frac{\neg P \land \exists_x R(x)}{Q} \text{ and } S = \{\neg P, R(c)\}$   $\{\neg P\} \vdash \neg P \text{ and } \{\neg P\} \vdash R(c)$   $\Leftarrow \quad \neg P \in \{\neg P\} \text{ and } rule \ \frac{\mathrm{true}}{R(c)} \text{ and } S = \emptyset$ 

true

/department of mathematics and computer science



We write rewrite  $A \vDash L$  if  $A \vDash I$  for each  $I \in L$ .

 $\langle {\it C}, {\it U} \rangle$  is a three-valued stable model if

- $a \in C$  if, and only if,  $N \vdash a$  for some N with  $C \cup U \vDash N$
- $a \in C \cup U$  if, and only if,  $N \vdash a$  for some N with  $C \vDash N$

(*N* is a set of negative literals here.)



#### Trivial translation of traditional to FOL-SOS:

| S |           | $\bigwedge S'$ |
|---|-----------|----------------|
| _ | $\mapsto$ |                |
| а |           | а              |

S' is S with all  $t \stackrel{a}{\nrightarrow}$  replaced by  $\forall_x (\neg t \stackrel{a}{\rightarrow} x)$ 



From FOL-SOS to traditional SOS is possible for well-defined specifications.

Trivially: 
$$\langle C, \emptyset \rangle$$
 gives  $\{-: a \in C\}$ .

When not well-defined:

$$\frac{\phantom{aaaa}}{a \to a} \quad \frac{\phantom{aaaaa}}{b \to b} \quad \frac{\phantom{aaaaa}}{a \to b} \quad \frac{\phantom{aaaaaa}}{b \to a}$$

technische universiteit eindhoven

## FOL-SOS - Semantics

TU/e

Mousavi & Reniers:

For each deduction rule r of the following form,

$$\exists_{\widetilde{z_0}} \forall_{\widetilde{z_1}} \exists_{\widetilde{z_2}} \frac{\bigvee_{i \in I} \bigwedge_{j \in J} \phi_{ij}}{t \stackrel{I}{\to} t'}$$

$$sk(r) \text{ is } sk(r, \sigma_0, \sigma_{10}, \dots, \sigma_{20}, \dots, i_0, \dots \mid i_j) \text{ for each substitution}$$

$$\sigma_0 : \widetilde{z_0} \to \mathbb{C}, \text{ substitutions } \sigma_{10}, \sigma_{11}, \dots : \widetilde{z_1} \to \mathbb{C} \text{ such that for each}$$

$$z \in \widetilde{z_1}, \{\sigma_{10}(z), \sigma_{11}(z), \dots\} = \mathbb{C}, \text{ substitutions}$$

$$\sigma_{20}, \sigma_{21}, \dots : \widetilde{z_2} \to \mathbb{C}, \text{ indices } i_0, i_1, \dots \in I \text{ and each}$$

$$i_j \in \{i_0, i_1, \dots\} \text{ which is defined as follows.}$$

$$\frac{(\bigwedge_{j \in J} \sigma_0 \cdot \sigma_{10} \cdot \sigma_{20} \phi_{i_0j}) \land (\bigwedge_{j \in J} \sigma_0 \cdot \sigma_{11} \cdot \sigma_{21} \phi_{i_1j}) \land \dots}{\sigma_0 \cdot \sigma_{1i_i} \cdot \sigma_{2i_i} (t \stackrel{I}{\to} t')}$$



How to define stratifications w.r.t. formulae?

Looking at semantics: every *S* such that  $S \vDash \varphi$ .

Such sets S take role of premises in derivations.

But how to obtain such sets?



Easier: use set of literals that occur in  $\varphi$ :



A stratification is a function f of positive atoms to a set S if

- S is well-ordered
   (i.e. there is no infinite sequence s > s' > ...)
- for all rules  $\frac{\varphi}{2}$  and substitutions  $\sigma$  we have that
  - $b \in \operatorname{Lit}(\varphi)$  implies  $f(b\sigma) \leq f(a\sigma)$
  - $\neg b \in \operatorname{Lit}(\varphi)$  implies  $f(b\sigma) < f(a\sigma)$

If there is a stratification, then the model is two-valued.



$$\frac{x \downarrow \land \forall_y (x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow}$$

$$\operatorname{Lit}(x \downarrow \land \forall_y (x \xrightarrow{\tau} y \Rightarrow y \Downarrow)) = \{x \downarrow\} \cup \bigcup_t \{\neg x \xrightarrow{\tau} t, t \Downarrow\}$$

$$f(t\downarrow) = 0$$
  $f(t \stackrel{\tau}{\rightarrow} u) = 0$   $f(t\Downarrow) = 1$ 



$$\frac{\varphi}{f(x_1,\ldots,x_n)\overset{a}{\to}t},$$

- The right-hand sides of literals in φ are distinct variables different from x<sub>1</sub>,..., x<sub>n</sub>;
- 2. the right-hand sides of positive literals in  $\varphi$  are existentially bound;
- 3. the right-hand sides of negative literals in  $\varphi$  are universally bound;
- 4. the right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal.



$$\frac{\varphi}{f(x_1,\ldots,x_n)\overset{a}{\to}t},$$

The right-hand sides of literals in  $\varphi$  are distinct variables different from  $x_1, \ldots, x_n$ .

$$\begin{array}{l} x_1 \stackrel{a}{\rightarrow} y \wedge y \stackrel{b}{\rightarrow} z \\ x_1 \stackrel{a}{\rightarrow} x_2 \\ \exists_{x_3}(x_1 \stackrel{a}{\rightarrow} x_3) \vee \forall_{x_3}(x_2 \stackrel{a}{\rightarrow} x_3) \\ \exists_y(x_1 \stackrel{a}{\rightarrow} y \vee \forall_y(x_2 \stackrel{a}{\rightarrow} y)) \\ \exists_y(x_1 \stackrel{a}{\rightarrow} y \vee x_2 \stackrel{a}{\rightarrow} y) \end{array}$$



 $\operatorname{dv}(\varphi) \land \operatorname{ubrhs}(\varphi) \cap \{x_1, \ldots, x_n\} = \emptyset$ 



$$\frac{\varphi}{f(x_1,\ldots x_n) \xrightarrow{a} t},$$

The right-hand sides of positive literals in  $\varphi$  are existentially bound.

$$\begin{array}{l} x_1 \stackrel{a}{\rightarrow} y \\ \exists_y (x_1 \stackrel{a}{\rightarrow} y) \\ \forall_y (x_1 \stackrel{a}{\rightarrow} y) \\ \forall_y (x_2 \stackrel{a}{\rightarrow} y \Rightarrow x_1 \stackrel{a}{\rightarrow} z) \\ \forall_y (x_2 \stackrel{a}{\rightarrow} z \Rightarrow x_1 \stackrel{a}{\rightarrow} y) \end{array}$$



 $\operatorname{ext}_{\operatorname{FV}(\varphi)\setminus\{x_1,\ldots,x_n\}}(\varphi)$ 

$$\begin{array}{lll} \operatorname{ext}_{\mathcal{S}}(t \to u) &=& u \in \mathcal{S} \\ \operatorname{ext}_{\mathcal{S}}(\neg \psi) &=& \overline{\operatorname{ext}}_{\mathcal{S}}(\psi) \\ \operatorname{ext}_{\mathcal{S}}(\bigwedge \Psi) &=& \forall_{\psi \in \Psi} \operatorname{ext}_{\mathcal{S}}(\psi) \\ \operatorname{ext}_{\mathcal{S}}(\forall_{x}\psi) &=& \operatorname{ext}_{\mathcal{S} \setminus \{x\}}(\psi) \end{array}$$



$$\frac{\varphi}{f(x_1,\ldots,x_n)\overset{a}{\to}t},$$

The right-hand sides of negative literals in  $\varphi$  are universally bound.

$$\neg x_{1} \xrightarrow{a} y$$
  
$$\forall_{y} (\neg x_{1} \xrightarrow{a} y)$$
  
$$\forall_{y} (x_{2} \xrightarrow{a} y \Rightarrow x_{1} \xrightarrow{a} z)$$
  
$$\forall_{y} (x_{2} \xrightarrow{a} z \Rightarrow x_{1} \xrightarrow{a} y)$$





/department of mathematics and computer science



$$\frac{\varphi}{f(x_1,\ldots,x_n)\overset{a}{\to}t},$$

The right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal.

$$\exists_{z} (\forall_{y} (y \xrightarrow{a} z)) \forall_{y} (\exists_{z} (y \xrightarrow{a} z)) \exists_{y} (\exists_{z} (z \xrightarrow{a} y)) \exists_{y} (\forall_{w} (\exists_{z} (z \xrightarrow{a} y)))$$



 $h^{\mathrm{FV}(\varphi)\setminus\{x_1,\ldots,x_n\}}(\varphi)$ 



$$k_T^{S}(\neg \varphi) = k_T^{S}(\varphi)$$

$$k_T^{S}(\wedge \Phi) = \forall_{\varphi \in \Phi} k_T^{S}(\varphi)$$

$$k_T^{S}(\forall_x \varphi) = k_{T \cup \{x\}}^{S}(\varphi)$$



The examples all fit our congruence format.

$$\frac{\bigwedge_{a \in A} (\forall_y (\neg x \xrightarrow{a} y) \land \neg x \xrightarrow{a} \sqrt{)}}{\delta(x)}$$
$$\frac{\forall_y (\neg x \xrightarrow{\tau} y) \land x \sqrt{}}{x \sqrt{}} \qquad \frac{\exists_y (x \xrightarrow{\tau} y) \land \forall_y (x \xrightarrow{\tau} y \Rightarrow y \sqrt{})}{x \sqrt{}}$$
$$\frac{x \downarrow \land \forall_y (x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow}$$



Traditional format is incorporated:

- 1. The right-hand sides of literals in  $\varphi$  are distinct variables different from  $x_1, \ldots, x_n$ ;  $\leftarrow$  traditional distinctness requirement
- 2. the right-hand sides of positive literals in  $\varphi$  are existentially bound;  $\leftarrow$  trivially
- the right-hand sides of negative literals in φ are universally bound; ⇐ only quantifications: ∀<sub>x</sub>(¬ t → x)
- the right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal. ⇐ no (nested) quantifications



Mousavi & Reniers format (UNTyft/UnTyxt) is incorporated:

- 1. The right-hand sides of literals in  $\varphi$  are distinct variables different from  $x_1, \ldots, x_n$ ;  $\Leftarrow$  same
- 2. the right-hand sides of positive literals in  $\varphi$  are existentially bound;  $\Leftarrow$  same
- 3. the right-hand sides of negative literals in  $\varphi$  are universally bound;  $\Leftarrow$  same
- the right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal. ⇐ simpler variant due to ∃<sub>x</sub>∀<sub>y</sub>∃<sub>z</sub>



# Outline

Introduction

Traditional Structural Operational Semantics Syntax and Semantics Well-Definedness Congruence Format

Structural Operational Semantics with First-Order Logic Syntax and Semantics Well-Definedness Congruence Format

#### Summary



# Summary

- Full first-order power in premises of rules
- Straightforward extension of semantics
- Conservative extension of traditional SOS (with sugar)
- Conservative extension of traditional congruence format
- Congruence format requirements easily calculable
- Suits known examples using quantifications



Thank you for your attention!