# Structural Operational Semantics with <br> First-Order Logic 

Muck van Weerdenburg and Michel Reniers

Prose October 25, 2007

## Outline

Introduction
Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format
Structural Operational Semantics with First-Order Logic Syntax and Semantics
Well-Definedness
Congruence Format
Summary

## Introduction - Structural Operational Semantics (SOS)

SOS allows for intuitive definition of operational semantics.

Operational semantics typically in terms of transition systems.

Popular for giving semantics to

- programming languages,
- process algebra,
- Petri nets,
- etc.


## Introduction - Structural Operational Semantics (SOS)

Semantics is defined with rules.


C

Set $P$ of premises consists of positive and negative statements. $\left(x \xrightarrow{a} x^{\prime}\right.$ and $x \xrightarrow{a}$ )

Conclusion $c$ is a (positive) statement.

## Introduction - SOS formats

There exist (syntactic) formats.

- ntyft/ntyxt
- PANTH
- RBB-Cool
- etc.

These formats guarantee certain properties.
(Typically congruence of strong bisimilarity.)

## Introduction - Example SOS



Rules are in ntyft/ntyxt format.

Strong bisimilarity is a congruence.

## Introduction - SOS and quantifications

A predicate "is in a deadlock":
"We say that a process is in a deadlock [...] if it cannot do any action. That is, if $p$ is such a process, we have that $p \stackrel{a}{\rightarrow} q$ and $p \stackrel{a}{\rightarrow} \sqrt{ }$ for every $a, q ;[\ldots]$."
J.C.M. Baeten and J.A. Bergstra. Processen en procesexpressies. Informatie, 30(3):214-222, 1988.

## Introduction - SOS and quantifications

A weak termination predicate $\sqrt{ } /$ :

$$
p \mathbb{W} \Leftrightarrow \begin{cases}\text { (i) } & p \stackrel{\tau}{\rightarrow} \text { and } p \sqrt{ }, \text { or } \\ \text { (ii) } & p \xrightarrow{\tau} \text { and, for each } q, p \xrightarrow{\tau} q \text { implies } q \mathbb{W} .\end{cases}
$$

Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. Journal of the ACM, 39(1):147-187, 1992.

## Introduction - SOS and quantifications

A semantically divergence predicate $\Downarrow$ :
$p \downarrow$ and (for each $q, p \xrightarrow{\tau} q$ implies $q \Downarrow$ ) imply $p \Downarrow$

Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. Journal of the ACM, 39(1):147-187, 1992.

## Introduction - SOS and quantifications

M.R. Mousavi and M. Reniers gave a solution.

- Syntax is quite restricted:

$$
\exists_{\vec{x}} \forall_{\vec{y}} \exists_{\vec{z}} \frac{\ldots \wedge \ldots \vee \ldots}{t \xrightarrow{a} u}
$$

- Unintuitive semantics (via translation to traditional rules).
- Certain other peculiarities.
M.R. Mousavi and M. Reniers. A Congruence Rule Format with Universal Quantification. Proceedings of SOS'07, (to appear).


## Outline

## Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format
Structural Operational Semantics with First-Order Logic
Syntax and Semantics
Well-Definedness
Congruence Format

Summary

## Traditional SOS - Syntax

Variables $x, y, \ldots$
Functions $f, g, 0,1, \delta,+, \ldots$

$$
T::=x \mid f(T, \ldots, T)
$$

Predicates $P, Q, \xrightarrow{a}, \sqrt{ }, \ldots$

$$
\text { atom }::=P(T, \ldots, T)|\neg P(T)| \neg P\left(T,,_{-}\right) \mid ? ?
$$

Special negation $t \xrightarrow{\text { a }}$ ("there is no $u$ such that $t \xrightarrow{a} u$ ")

Rule $\frac{S}{a}$ (where $S$ is a set of atoms, a a positive atom)

## Traditional SOS - Semantics

Derivability of an atom a given set of assumptions $A$.

$$
\vdash \frac{A}{-}
$$

if:

- $a \in A$, or
- there is are rule $\frac{S}{b}$ and substitution $\sigma$ with
- $a=b \sigma$ and
- for all $c \in S \vdash \frac{A}{c \sigma}$


## Traditional SOS - Semantics

$$
\begin{aligned}
& \vdash \frac{\emptyset}{a .0+0 \xrightarrow{a} 0} \\
\Leftarrow & \quad \text { rule } \frac{x \xrightarrow{a} x^{\prime}}{x+y \xrightarrow{a} x^{\prime}} \text { and } \sigma=\left\{x \mapsto a .0, x^{\prime} \mapsto 0, y \mapsto 0\right\} \\
& \vdash \frac{\emptyset}{a .0 \xrightarrow{a} 0} \\
\Leftarrow & \quad \text { rule } \frac{\square}{a . x \xrightarrow{a} x} \text { and } \sigma=\{x \mapsto 0\} \\
& \text { true }
\end{aligned}
$$

## Traditional SOS - Semantics

$$
\begin{aligned}
& \vdash \frac{\{0 \stackrel{a}{\rightarrow}\}}{0 \sqrt{ }} \\
\Leftarrow & \quad \text { rule } \frac{x}{x \stackrel{a}{\rightarrow}} \text { and } \sigma=\{x \mapsto 0\} \\
& \vdash \frac{\{0 \stackrel{a}{\rightarrow}\}}{0 \stackrel{a}{\rightarrow}} \\
\Leftarrow & 0 \stackrel{a}{\rightarrow} \in\{0 \stackrel{a}{\rightarrow}\}
\end{aligned}
$$

## Traditional SOS - Semantics

Negative statements can cause problems:

$$
\frac{\neg P}{P}
$$

We consider three-valued models $\langle C, U\rangle$.
$C$ is "Certainly true", $U$ is "Unknown".
$\left((C \cup U)^{-1}\right.$ is "certainly false." )

Above rule as three-valued model: $\langle\emptyset,\{P\}\rangle$

## Traditional SOS - Semantics

We write $A \vDash a$ if $a \in A$ and $A \vDash t \nrightarrow$ if there is no $u$ with $t \rightarrow u \in A$. We also rewrite $A \vDash S$ if $A \vDash s$ for each $s \in S$.
$\langle C, U\rangle$ is a three-valued stable model if

- a $\in C$ if, and only if, $\vdash \frac{N}{a}$ for some $N$ with $C \cup U \vDash N$
- a $\in C \cup U$ if, and only if, $\vdash \frac{N}{a}$ for some $N$ with $C \vDash N$ ( $N$ is a set of negative atoms here.)

Interested in (information-)least three-valued stable model.

## Traditional SOS - Well-Definedness

Generally we are only interested in two-valued models.

That is, models $\langle C, U\rangle$ where $U=\emptyset$.

How to determine that a three-valued model is actually two-valued?

## Traditional SOS - Well-Definedness

A stratification is a function $f$ of positive atoms to a set $S$ if

- $S$ is well-ordered
(i.e. there is no infinite sequence $s>s^{\prime}>\ldots$ )
- for all rules $\frac{S}{a}$ and substitutions $\sigma$ we have that
- $b \in S$ implies $f(b \sigma) \leq f(a \sigma)$
- $t \xrightarrow{a} \in S$ implies $f(t \sigma \xrightarrow{a} u)<f(a \sigma)$ for all $u$

If there is a stratification, then the model is two-valued.

## Traditional SOS - Well-Definedness

$$
\begin{array}{rc}
\frac{x \xrightarrow{a} x^{\prime}}{a . x \xrightarrow{a} x} & \frac{x \xrightarrow{a} x^{\prime}}{x+y \xrightarrow{a} x^{\prime}} \\
& f(t \xrightarrow{a} u)=0 \\
& f(t \sqrt{ })=1
\end{array}
$$

## Traditional SOS - Well-Definedness

$$
\frac{\neg P}{P}
$$

$$
f(P)<f(P)
$$

## Traditional SOS - Well-Definedness

$$
\begin{aligned}
& \bar{P} \quad \frac{\neg P}{P} \\
& f(P)<f(P)
\end{aligned}
$$

Least three-valued stable model is $\langle\{P\}, \emptyset\rangle$ !

## Traditional - Well-Definedness

Why $\leq$ for positives and $<$ for negatives?
Essence is limiting the number of steps in three-valued model definition:

$$
\text { 1. } a \in C \text { if } \vdash \frac{N}{a} \text { and } C \cup U \vDash N \text {. }
$$

2. for $\neg b \in N, b \in C \cup U$ if $\vdash \frac{N^{\prime}}{b}$ and $C \vDash N^{\prime}$
3. for $\neg c \in C, c \in C$ if $\ldots$
4. ...

The $\leq$ for positives is to get $f(b)<f(a)$ for $b \in N$ of $\vdash \frac{N}{a}$.

## Traditional SOS - Congruence Format

If all rules are of the form:

$$
\frac{\left\{t_{i} \xrightarrow{a} y_{i}: i \in I\right\} \cup\left\{t_{j} \xrightarrow{a}: j \in J\right\}}{f\left(x_{1}, \ldots x_{n}\right) \xrightarrow{a} t}
$$

with all $x_{1}, \ldots, x_{n}$ and $y_{i}(i \in I)$ distinct,
then strong bisimilarity is a congruence for all $f$.
(i.e. if $p_{i} \leftrightarrows q_{i}$ for $1 \leq i \leq n$, then $f\left(p_{1}, \ldots, p_{n}\right) \leftrightarrows f\left(q_{1}, \ldots, q_{n}\right)$ )

## Outline

## Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format
Structural Operational Semantics with First-Order Logic Syntax and Semantics
Well-Definedness
Congruence Format

Summary

## Structural Operational Semantics with First-Order Logic

We want quantifications, implications etc.

That is, we want first-order logic formulae.

We also want it to be an extension of traditional SOS.

Finally, we want to lever traditional notions to this setting.

## Infinitary First-Order Kleene Logic - Syntax

We want first-order logic in premises:

$$
\varphi::=a|\neg \varphi| \bigwedge\{\varphi, \ldots\} \mid \forall_{x} \varphi
$$

Other operators are considered sugar:
true $=\bigwedge \emptyset, x \vee y=\neg \bigwedge\{\neg x, \neg y\}$, etc.

Literals atoms or negation of atoms. (I.e. no more $t \stackrel{a}{\rightarrow}$.)

## Infinitary First-Order Kleene Logic - Semantics

Set $A$ makes $\varphi$ true $(A \vDash \varphi)$ :

$$
\begin{array}{lll}
A \vDash a & \text { iff } & a \in A \\
A \vDash \neg \psi & \text { iff } & A \not \forall \psi \\
A \vDash \bigwedge \psi & \text { iff } & \text { for all } \psi \in \Psi, A \vDash \psi \\
A \vDash \forall_{x} \psi & \text { iff } & \text { for all term } t, A \vDash \psi[t / x]
\end{array}
$$

Set $A$ makes $\varphi$ false $(A \not \models \varphi)$ :

$$
\begin{array}{lll}
A \not \forall a & \text { iff } & \neg a \in A \\
A \not \forall \neg \psi & \text { iff } & A \vDash \psi \\
A \not \models \bigwedge \psi & \text { iff } & \text { there is a } \psi \in \psi \text { with } A \not \models \psi \\
A \not \forall \forall \forall_{x} \psi & \text { iff } & \text { there is a } t \text { with } A \not \forall \psi[t / x]
\end{array}
$$

## FOL-SOS - Syntax

$$
\begin{gathered}
\varphi \\
a
\end{gathered}
$$

## FOL-SOS - Syntax

A predicate "is in a deadlock":
"We say that a process is in a deadlock [...] if it cannot do any action. That is, if $p$ is such a process, we have that $p \stackrel{a}{\rightarrow} q$ and $p \stackrel{a}{\rightarrow} \sqrt{ }$ for every $a, q ;[\ldots]$."

$$
\frac{\bigwedge_{a \in A}\left(\forall_{y}(\neg x \xrightarrow{a} y) \wedge \neg x \xrightarrow{a} \sqrt{ }\right)}{\delta(x)}
$$

## FOL-SOS - Syntax

A weak termination predicate $\sqrt{ }$ :

$$
\begin{aligned}
& p \mathbb{W} \Leftrightarrow \begin{cases}(\text { i }) & p \stackrel{\tau}{\rightarrow} \text { and } p \sqrt{ }, \text { or } \\
\text { (ii) } & p \xrightarrow{\tau} \text { and, for each } q, p \xrightarrow{\tau} q \text { implies } q \sqrt{ } / .\end{cases} \\
& \frac{\forall_{y}(\neg x \xrightarrow{\tau} y) \wedge x \sqrt{ }}{} \quad \frac{\exists_{y}(x \xrightarrow{\tau} y) \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \sqrt{ })}{x \sqrt{W}}
\end{aligned}
$$

## FOL-SOS - Syntax

A semantically divergence predicate $\Downarrow$ :
$p \downarrow$ and (for each $q, p \xrightarrow{\tau} q$ implies $q \Downarrow$ ) imply $p \Downarrow$

$$
\frac{x \downarrow \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow}
$$

## FOL-SOS - Syntax

Mousavi \& Reniers have to write

$$
\forall_{y} \frac{\bigwedge_{a \in A}(x \stackrel{a}{\nrightarrow} y \wedge x \stackrel{a}{\mapsto} \sqrt{ })}{\delta(x)}
$$

for

$$
\frac{\bigwedge_{a \in A}(\forall y(\neg x \xrightarrow{a} y) \wedge \neg x \xrightarrow{a} \sqrt{ })}{\delta(x)}
$$

## FOL-SOS - Syntax

Mousavi \& Reniers have to write

$$
\forall_{y} \frac{x \stackrel{\tau}{\rightarrow} y \wedge x \sqrt{ }}{x \sqrt{ }} \quad \exists_{y} \forall_{z} \frac{x^{\tau} y \wedge(x \stackrel{\tau}{\rightarrow} z \vee z \mathbb{W})}{x \mathbb{W}}
$$

for

$$
\frac{\forall_{y}(\neg x \stackrel{\tau}{\rightarrow} y) \wedge x \sqrt{ }}{x_{\mathfrak{W}}} \quad \frac{\exists_{y}(x \stackrel{\tau}{\rightarrow} y) \wedge \forall_{y}(x \stackrel{\tau}{\rightarrow} y \Rightarrow y \mathbb{W})}{x \mathfrak{W}}
$$

## FOL-SOS - Syntax

Mousavi \& Reniers have to write

$$
\forall_{y} \frac{x \downarrow \wedge(x \stackrel{\tau}{\rightarrow} y \vee y \Downarrow)}{x \Downarrow}
$$

for

$$
\frac{x \downarrow \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow}
$$

## FOL-SOS - Semantics

Derivability of an literal / given set of assumptions $A$.

$$
A \vdash I
$$

if:

- $l \in A$, or
- there is are rule $\frac{\varphi}{a}$, set $S$ and substitution $\sigma$ with
- $I=a \sigma$ and
- $S \vDash \varphi \sigma$ and
- for all $b \in S, A \vdash b$


## FOL-SOS - Semantics

$$
\begin{aligned}
& \{\neg P\} \vdash Q \\
\Leftarrow & \quad \text { rule } \frac{\neg P \wedge \exists_{x} R(x)}{Q} \text { and } S=\{\neg P, R(c)\} \\
& \{\neg P\} \vdash \neg P \text { and }\{\neg P\} \vdash R(c) \\
\Leftarrow & \quad \neg P \in\{\neg P\} \text { and rule } \frac{\text { true }}{R(c)} \text { and } S=\emptyset \\
& \text { true }
\end{aligned}
$$

## FOL-SOS - Semantics

We write rewrite $A \vDash L$ if $A \vDash I$ for each $I \in L$.
$\langle C, U\rangle$ is a three-valued stable model if

- $a \in C$ if, and only if, $N \vdash a$ for some $N$ with $C \cup U \vDash N$
- $a \in C \cup U$ if, and only if, $N \vdash a$ for some $N$ with $C \vDash N$
( $N$ is a set of negative literals here.)


## FOL-SOS - Semantics

Trivial translation of traditional to FOL-SOS:

$S^{\prime}$ is $S$ with all $t \stackrel{a}{\rightarrow}$ replaced by $\forall_{x}(\neg t \xrightarrow{a} x)$

## FOL-SOS - Semantics

From FOL-SOS to traditional SOS is possible for well-defined specifications.

Trivially: $\langle C, \emptyset\rangle$ gives $\left\{\frac{-}{a}: a \in C\right\}$.

When not well-defined:

$$
\varlimsup_{a \rightarrow a} \bar{b}_{b \rightarrow b} \frac{\neg b \rightarrow a}{a \rightarrow b} \frac{\neg a \rightarrow b}{b \rightarrow a}
$$

Not possible with just $a \nrightarrow$ and $b \nrightarrow$.

## FOL-SOS - Semantics

Mousavi \& Reniers:
For each deduction rule $r$ of the following form,

$$
\exists_{\widetilde{z_{0}}} \forall_{\widetilde{z}_{1}} \exists_{\widetilde{z_{2}}} \frac{\bigvee_{i \in I} \bigwedge_{j \in J} \phi_{i j}}{t \xrightarrow{l} t^{\prime}}
$$

$s k(r)$ is $s k\left(r, \sigma_{0}, \sigma_{10}, \ldots, \sigma_{20}, \ldots, i_{0}, \ldots \mid i_{j}\right)$ for each substitution $\sigma_{0}: \widetilde{z_{0}} \rightarrow \mathbb{C}$, substitutions $\sigma_{10}, \sigma_{11}, \ldots: \widetilde{z_{1}} \rightarrow \mathbb{C}$ such that for each $z \in \widetilde{z_{1}},\left\{\sigma_{10}(z), \sigma_{11}(z), \ldots\right\}=\mathbb{C}$, substitutions $\sigma_{20}, \sigma_{21}, \ldots: \widetilde{z_{2}} \rightarrow \mathbb{C}$, indices $i_{0}, i_{1}, \ldots \in I$ and each $i_{j} \in\left\{i_{0}, i_{1}, \ldots\right\}$ which is defined as follows.

$$
\frac{\left(\bigwedge_{j \in J} \sigma_{0} \cdot \sigma_{10} \cdot \sigma_{20} \phi_{i_{0} j}\right) \wedge\left(\bigwedge_{j \in J} \sigma_{0} \cdot \sigma_{11} \cdot \sigma_{21} \phi_{i_{1} j}\right) \wedge \ldots}{\sigma_{0} \cdot \sigma_{1 i_{j}} \cdot \sigma_{2 i_{j}}\left(t \xrightarrow{\prime} t^{\prime}\right)}
$$

## FOL-SOS - Well-Definedness

How to define stratifications w.r.t. formulae?

Looking at semantics: every $S$ such that $S \vDash \varphi$.

Such sets $S$ take role of premises in derivations.

But how to obtain such sets?

## FOL-SOS - Well-Definedness

Easier: use set of literals that occur in $\varphi$ :

$$
\begin{array}{ll}
\operatorname{Lit}(a) & =\{a\} \\
\operatorname{Lit}(\neg \varphi) & =\overline{\operatorname{Lit}}(\varphi) \\
\operatorname{Lit}(\bigwedge \Phi) & =\bigcup_{\varphi \in \Phi} \operatorname{Lit}(\varphi) \\
\operatorname{Lit}\left(\forall_{x} \varphi\right) & =\bigcup_{t} \operatorname{Lit}(\varphi[t / x]) \\
\overline{\operatorname{Lit}}(a) & =\{\neg a\} \\
\overline{\operatorname{Lit}}(\neg \varphi) & =\operatorname{Lit}(\varphi) \\
\overline{\operatorname{Lit}}(\bigwedge \Phi) & =\bigcup_{\varphi \in \Phi} \overline{\operatorname{Lit}}(\varphi) \\
\overline{\operatorname{Lit}}\left(\forall_{x} \varphi\right) & =\bigcup_{t} \overline{\operatorname{Lit}}(\varphi[t / x])
\end{array}
$$

## FOL-SOS - Well-Definedness

A stratification is a function $f$ of positive atoms to a set $S$ if

- $S$ is well-ordered (i.e. there is no infinite sequence $s>s^{\prime}>\ldots$ )
- for all rules $\frac{\varphi}{a}$ and substitutions $\sigma$ we have that
- $b \in \operatorname{Lit}(\varphi)$ implies $f(b \sigma) \leq f(a \sigma)$
- $\neg b \in \operatorname{Lit}(\varphi)$ implies $f(b \sigma)<f(a \sigma)$

If there is a stratification, then the model is two-valued.

## FOL-SOS - Well-Definedness

$$
\begin{gathered}
\frac{x \downarrow \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow} \\
\operatorname{Lit}\left(x \downarrow \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \Downarrow)\right)=\{x \downarrow\} \cup \bigcup_{t}\{\neg x \xrightarrow{\tau} t, t \Downarrow\} \\
f(t \downarrow)=0 \quad f(t \xrightarrow{\tau} u)=0 \quad f(t \Downarrow)=1
\end{gathered}
$$

## FOL-SOS - Congruence Format



1. The right-hand sides of literals in $\varphi$ are distinct variables different from $x_{1}, \ldots, x_{n}$;
2. the right-hand sides of positive literals in $\varphi$ are existentially bound;
3. the right-hand sides of negative literals in $\varphi$ are universally bound;
4. the right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal.

## FOL-SOS - Congruence Format



The right-hand sides of literals in $\varphi$ are distinct variables different from $x_{1}, \ldots, x_{n}$.

$$
\begin{aligned}
& x_{1} \xrightarrow{a} y \wedge y \xrightarrow{b} z \\
& x_{1} \xrightarrow{a} x_{2} \\
& \exists_{x_{3}}\left(x_{1} \xrightarrow{a} x_{3}\right) \vee \forall_{x_{3}}\left(x_{2} \xrightarrow{a} x_{3}\right) \\
& \exists_{y}\left(x_{1} \xrightarrow{a} y \vee \forall_{y}\left(x_{2} \xrightarrow{a} y\right)\right) \\
& \exists_{y}\left(x_{1} \xrightarrow{a} y \vee x_{2} \xrightarrow{a} y\right)
\end{aligned}
$$

## FOL-SOS - Congruence Format

$$
\begin{aligned}
& \operatorname{dv}(\varphi) \wedge \operatorname{ubrhs}(\varphi) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\emptyset \\
& \operatorname{dv}(t \rightarrow u) \quad=\quad u \in \mathbb{V} \\
& \operatorname{dv}(\neg \psi) \quad=\operatorname{dv}(\psi) \\
& \operatorname{dv}(\bigwedge \Psi) \quad=\quad \forall_{\psi \in \Psi} \operatorname{dv}(\psi) \wedge \\
& \forall_{\psi, \psi^{\prime} \in \Psi}\left(\psi \neq \psi^{\prime} \Rightarrow \operatorname{ubrhs}(\psi) \cap \operatorname{ubrhs}\left(\psi^{\prime}\right)=\emptyset\right) \\
& \operatorname{dv}\left(\forall_{x} \psi\right)=\operatorname{dv}(\psi) \\
& \operatorname{ubrhs}(t \rightarrow u)=\operatorname{var}(u) \\
& \operatorname{ubrhs}(\neg \psi) \quad=\quad \operatorname{ubrhs}(\psi) \\
& \operatorname{ubrhs}(\bigwedge \Psi)=\bigcup_{\psi \in \Psi} \operatorname{ubrhs}(\psi) \\
& \operatorname{ubrhs}\left(\forall_{x} \psi\right)=\operatorname{ubrhs}(\psi) \backslash\{x\}
\end{aligned}
$$

## FOL-SOS - Congruence Format



The right-hand sides of positive literals in $\varphi$ are existentially bound.

$$
\begin{aligned}
& x_{1} \xrightarrow{a} y \\
& \exists_{y}\left(x_{1} \xrightarrow{a} y\right) \\
& \forall_{y}\left(x_{1} \xrightarrow{a} y\right) \\
& \forall_{y}\left(x_{2} \xrightarrow{a} y \Rightarrow x_{1} \xrightarrow{a} z\right) \\
& \forall_{y}\left(x_{2} \xrightarrow{a} z \Rightarrow x_{1} \xrightarrow{a} y\right)
\end{aligned}
$$

## FOL-SOS - Congruence Format

$$
\begin{aligned}
& \operatorname{ext}_{F V}(\varphi) \backslash\left\{x_{1}, \ldots, x_{n}\right\}(\varphi) \\
& \operatorname{ext}_{s}(t \rightarrow u)=u \in S \\
& \operatorname{ext}_{S}(\neg \psi)=\overline{\operatorname{ext}}_{S}(\psi) \\
& \operatorname{exts}(\bigwedge \Psi)=\forall_{\psi \in \Psi} \operatorname{exts}_{S}(\psi) \\
& \operatorname{ext}_{s}\left(\forall_{x} \psi\right)=\operatorname{ext}_{S \backslash\{x\}}(\psi) \\
& \overline{\operatorname{ext}}_{S}(t \rightarrow u)=\text { true } \\
& \overline{\operatorname{ext}}_{S}(\neg \psi)=\operatorname{ext}_{S}(\psi) \\
& \overline{\operatorname{ext}}_{S}(\bigwedge \psi)=\forall_{\psi \in \psi} \overline{\operatorname{ext}}_{S}(\psi) \\
& \overline{\operatorname{ext}}_{S}\left(\forall_{x} \psi\right)=\overline{\operatorname{ext}}_{S \cup\{x\}}(\psi)
\end{aligned}
$$

## FOL-SOS - Congruence Format



The right-hand sides of negative literals in $\varphi$ are universally bound.

$$
\begin{aligned}
& \neg x_{1} \xrightarrow{a} y \\
& \forall_{y}\left(\neg x_{1} \xrightarrow{a} y\right) \\
& \forall_{y}\left(x_{2} \xrightarrow{a} y \Rightarrow x_{1} \xrightarrow{a} z\right) \\
& \forall_{y}\left(x_{2} \xrightarrow{a} z \Rightarrow x_{1} \xrightarrow{a} y\right)
\end{aligned}
$$

## FOL-SOS - Congruence Format

$$
\operatorname{ext}_{\emptyset}(\neg \varphi)
$$

## FOL-SOS - Congruence Format



The right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal.

$$
\begin{aligned}
& \exists_{z}\left(\forall_{y}(y \xrightarrow{a} z)\right) \\
& \forall_{y}\left(\exists_{z}(y \xrightarrow{a} z)\right) \\
& \exists_{y}\left(\exists_{z}(z \xrightarrow{a} y)\right) \\
& \exists_{y}\left(\forall_{w}\left(\exists_{z}(z \xrightarrow{a} y)\right)\right)
\end{aligned}
$$

## FOL-SOS - Congruence Format

$$
\begin{aligned}
& h^{\mathrm{FV}(\varphi) \backslash\left\{x_{1}, \ldots, x_{n}\right\}}(\varphi) \\
& h^{S}(t \rightarrow u)=\text { true } \\
& h^{S}(\neg \varphi)=\bar{h}^{S}(\varphi) \\
& h^{S}(\bigwedge \Phi)=\forall_{\varphi \in \Phi} h^{S}(\varphi) \\
& h^{S}\left(\forall_{x} \varphi\right)=h^{\mathscr{\emptyset}}(\varphi) \wedge k_{\{x\}}^{S}(\varphi) \\
& \bar{h}^{S}(t \rightarrow u)=\text { true } \\
& \bar{h}^{S}(\neg \varphi)=h^{S}(\varphi) \\
& \bar{h}^{S}(\bigwedge \Phi)=\forall_{\varphi \in \Phi} \bar{h}^{S}(\varphi) \\
& \bar{h}^{S}\left(\forall_{x} \varphi\right)=\bar{h}^{S \cup\{x\}}(\varphi) \\
& k_{T}^{S}(t \rightarrow u)=(u \in S \backslash T) \Rightarrow(\operatorname{var}(t) \cap T=\emptyset) \\
& k_{T}^{S}(\neg \varphi)=k_{T}^{S}(\varphi) \\
& k_{T}^{S}(\bigwedge \Phi)=\forall_{\varphi \in \Phi} k_{T}^{S}(\varphi) \\
& k_{T}^{S}\left(\forall_{x} \varphi\right)=k_{T \cup\{x\}}^{S}(\varphi)
\end{aligned}
$$

## FOL-SOS - Congruence Format

The examples all fit our congruence format.

$$
\begin{gathered}
\frac{\bigwedge_{a \in A}\left(\forall_{y}(\neg x \xrightarrow{a} y) \wedge \neg x \xrightarrow{a} \sqrt{ }\right)}{\delta(x)} \\
\frac{\forall y(\neg x \xrightarrow{\tau} y) \wedge x \sqrt{ }}{x \Downarrow} \quad \frac{\exists_{y}(x \xrightarrow{\tau} y) \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow} \\
\frac{x \downarrow \wedge \forall_{y}(x \xrightarrow{\tau} y \Rightarrow y \Downarrow)}{x \Downarrow}
\end{gathered}
$$

## FOL-SOS - Congruence Format

Traditional format is incorporated:

1. The right-hand sides of literals in $\varphi$ are distinct variables different from $x_{1}, \ldots, x_{n} ; \Leftarrow$ traditional distinctness requirement
2. the right-hand sides of positive literals in $\varphi$ are existentially bound; $\Leftarrow$ trivially
3. the right-hand sides of negative literals in $\varphi$ are universally bound; $\Leftarrow$ only quantifications: $\forall_{x}(\neg t \xrightarrow{a} x)$
4. the right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal. $\Leftarrow$ no (nested) quantifications

## FOL-SOS - Congruence Format

Mousavi \& Reniers format (UNTyft/UnTyxt) is incorporated:

1. The right-hand sides of literals in $\varphi$ are distinct variables different from $x_{1}, \ldots, x_{n}$; same
2. the right-hand sides of positive literals in $\varphi$ are existentially bound; $\Leftarrow$ same
3. the right-hand sides of negative literals in $\varphi$ are universally bound; $\Leftarrow$ same
4. the right-hand side variable of positive literals are bound inside the scope of the variables of the left-hand side of that literal. $\Leftarrow$ simpler variant due to $\exists \vec{x} \forall \vec{y} \exists \vec{z}$

## Outline

## Introduction

Traditional Structural Operational Semantics
Syntax and Semantics
Well-Definedness
Congruence Format
Structural Operational Semantics with First-Order Logic
Syntax and Semantics
Well-Definedness
Congruence Format

## Summary

## Summary

- Full first-order power in premises of rules
- Straightforward extension of semantics
- Conservative extension of traditional SOS (with sugar)
- Conservative extension of traditional congruence format
- Congruence format requirements easily calculable
- Suits known examples using quantifications


## Thank you for your attention!

